Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (10): 1898-1906    DOI: 10.3785/j.issn.1008-973X.2019.10.007
Mechanical and Energy Engineering     
Numerical simulation of effects of flue gas recirculation on biomass combustion in grate boiler
Yan-ning LU1(),Hong-tao ZHANG1,Yan-wei XU2,Yan-qun ZHU1,*(),Kai-di WAN1,Zhe-ru SHAO2,Zhi-hua WANG1
1. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
2. Everbright Enviromental Technology Research Institute Limited Company, Nanjing 211000, China
Download: HTML     PDF(1114KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A method of mixing secondary air with reciprocating flue gas combustion was conducted on a 130 t/h biomass grate boiler in order to solve the problems of serious corrosion of water wall, excessive ash accumulation of screen superheater and high NOx emission in the operation of biomass boilers. The computational fluid dynamics (CFD) simulation approach was applied to simulate the combustion process in the furnace in order to provide theoretical guidance for the actual operation of the boiler. CFD simulation results indicate that flue gas injected with upper secondary air can improve the gas temperature distribution by facilitating the gas flow disturbance in the upper furnace, and mitigate the fouling and slagging issues of the platen superheater by lowering and uniforming the gas temperature; flue gas injected with lower secondary air helps to reduce the peak combustion temperature and inhibit the formation of thermal NOx. The combustion in the boiler was improved with a more uniform burning condition by optimizing secondary air distribution with the flue gas recirculation technology, and the NOx emission was reduced by 32.1% compared to the original condition before the optimization.



Key wordsbiomass grate boiler      computational fluid dynamics (CFD)      flue gas recirculation technology      secondary air      NOx     
Received: 22 June 2018      Published: 30 September 2019
CLC:  TK 16  
Corresponding Authors: Yan-qun ZHU     E-mail: 21627100@zju.edu.cn;yqzhu@zju.edu.cn
Cite this article:

Yan-ning LU,Hong-tao ZHANG,Yan-wei XU,Yan-qun ZHU,Kai-di WAN,Zhe-ru SHAO,Zhi-hua WANG. Numerical simulation of effects of flue gas recirculation on biomass combustion in grate boiler. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1898-1906.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.10.007     OR     http://www.zjujournals.com/eng/Y2019/V53/I10/1898


烟气再循环对生物质炉排炉燃烧影响的数值模拟

针对生物质锅炉实际运行过程中常出现水冷壁腐蚀严重、屏式过热器积灰多和NOx排放量高等问题,以一台某电厂额定蒸发量为130 t/h的生物质往复式水冷炉排炉为研究对象,提出二次风掺混再循环烟气燃烧的方法,采用计算流体力学(CFD)数值模拟技术对炉内燃烧过程进行热态模拟,旨在为锅炉的实际运行操作提供理论指导. 计算结果表明,采用烟气再循环可以增强炉膛上部气流扰动,改善炉内温度分布的均匀性,提高燃尽率,同时降低屏区火焰温度,减轻大屏积灰结渣风险;后墙下二次风掺混再循环烟气后,主燃区形成还原性气氛,温度下降,有效抑制热力型NOx的生成.后墙下二次风掺混30%再循环烟气的工况炉内气流均匀饱满,高温烟气分布从炉膛深度中心向前、后墙两侧稳定下降,NOx排放质量浓度相对于无再循环烟气时减少了32.1%.


关键词: 生物质炉排炉,  计算流体力学(CFD),  烟气再循环技术,  二次风,  氮氧化物(NOx) 
元素分析wB/% 工业分析wB/%
注:1)表中数据为收到基.
C H O N S M V FC A
26.66 3.37 23.41 0.41 0.10 32.4 44.79 9.15 13.66
Tab.1 Ultimate analysis and proximate analysis of tested biomass
Fig.1 Geometry model of simulated biomass grate furnace
Fig.2 Schematic of NOx transformation model
Fig.3 Air distribution of calculation condition A1
工况编号 ${\alpha _{\rm{1}}}$/% ${\alpha _{{\rm{ign}}}}$/% ${\alpha _{{\rm{21}}}}$/% ${\alpha _{22}}$/% ${\alpha _{{\rm{23}}}}$/% ${\alpha _{{\rm{24}}}}$/%
A0 58.1 6.0 12.8 0 23.1 0
A1 58.1 6.0 12.8 0 23.1 0
B1 58.1 6.0 12.8 0 18 5.1
B2 58.1 6.0 12.8 0 14.6 8.5
B3 58.1 6.0 12.8 0 11.2 11.9
Tab.2 Air distribution of calculation conditions
工况编号 ${\beta _{{\rm{21}}}}$/% ${\beta _{22}}$/% ${\beta _{{\rm{23}}}}$/% ${\beta _{{\rm{24}}}}$/%
A0 0 0 0 0
A1 0 15.5 0 14.5
B1 0 15.5 4.4 10.1
B2 0 15.5 7.3 7.3
B3 0 15.5 10.1 4.4
Tab.3 Flue gas distribution of calculation conditions
Fig.4 Temperature distribution on center cross section of A0
Fig.5 Pathline distribution of A0
Fig.6 Temperature distribution on center cross section of A1
Fig.7 Pathline distribution of A1
Fig.8 Temperature distribution on center cross section under conditions with lower secondary air mixing recycling flue gas(B1,B2,B3)
工况编号 Tt /K Tf /K To /K ${\varphi _{\rm O_2}}$/% ${\varphi _{\rm CO}}$/10?6
A0 1277 1242 993 3.6% 2 220
A1 1283 1128 953 3.4% <1
B1 1291 1138 959 3.6% <1
B2 1266 1149 973 3.3% <1
B3 1286 1135 990 3.6% <1
Tab.4 Statistical values under conditions with different secondary air arrangements(A0,A1,B1,B2,B3)
Fig.9 Average temperature distribution along x direction on throat plane under conditions with different secondary air arrangements(A0,A1,B1,B2,B3)
Fig.10 Average temperature distribution along x direction on incinerator outlet plane under conditions with different secondary air arrangements(A0,A1,B1,B2,B3)
Fig.11 Pathline distribution under conditions with lower secondary air mixing recycling flue gas(B1,B2,B3)
工况编号 $\rho_{{\rm{NO}}_x} $/(mg·m?3
A0 304.2
A1 246.3
B1 206.4
B2 247.8
B3 253.6
Tab.5 Simulation results of NOx under conditions with different secondary air arrangements(A0,A1,B1,B2,B3)
[1]   雒廷亮 生物质能的应用前景分析[J]. 能源研究与信息, 2003, (04): 194- 197
LUO Ting-liang Application prospect analysis of biomass energy[J]. Energy Research and Information, 2003, (04): 194- 197
doi: 10.3969/j.issn.1008-8857.2003.04.002
[2]   高尚武. 森林能源研究[M]. 北京: 中国科学技术出版社, 1999.
[3]   娄喜艳, 丁锦平 生物质能源发展现状及应用前景[J]. 中国农业文摘-农业工程, 2017, 29 (02): 12- 14
LOU Xi-yan, DING Jin-ping Research on the current development and application prospect of biomass energy[J]. Agricultural Science and Engineering in China, 2017, 29 (02): 12- 14
[4]   曾宇, 谭四军 利用光合菌发酵对玉米秸秆进行转化的研究[J]. 微生物学通报, 2002, 28 (6): 5- 9
ZENG Yu, TAN Si-jun Studies on teh utilizing the photosynthetic bacterium fermentation for biotransformation on corn straw[J]. Microbiology, 2002, 28 (6): 5- 9
doi: 10.3969/j.issn.0253-2654.2002.06.002
[5]   2016年我国生物质发电现状及发展前景分析[EB/OL]. [2016-11-28]. http://www.chyxx.com/industry/201611/471934.html.
[6]   国家能源局. 生物质能发展" 十三五”规划[EB/OL]. (2016-10-28)[2018-03-20]. http://www.gov.cn/xinwen/2016-12/06/content_5143612.htm.
[7]   赵杰. 生物质气再燃还原NOx的实验研究[D]. 上海: 上海应用技术大学, 2016.
ZHAO Jie. Experimental study on NOx reduction by biomass reburning [D]. Shanghai: Shanghai Institute of Technology, 2016.
[8]   熊义. 生物质层燃炉内燃烧与NOx排放模型研究[D]. 广州: 华南理工大学, 2016.
XIONG Yi. Study on the combustion and NOx emission model for the grate furnace of biomass [D]. Guangzhou: South China University of Technology, 2016.
[9]   韩海燕. 生物质层燃炉内燃烧特性的数值模拟研究[D]. 哈尔滨: 哈尔滨工业大学, 2012.
HAN Hai-yan. Numerical simulation of combustion in biomass grate furnaces [D]. Harbin: Harbin Institute of Technology, 2012.
[10]   黄长华, 程永霞 生物质直燃发电厂锅炉炉型选择探讨[J]. 南方能源建设, 2015, 2 (02): 70- 75
HUANG Chang-hua, CHEN Yong-xia Biomass power plant boiler type selection of direct combustion[J]. Energy Construction, 2015, 2 (02): 70- 75
[11]   张建东 烟气再循环技术在垃圾焚烧中的效果分析[J]. 山东工业技术, 2014, (10): 43
ZHANG Jian-dong Analysis of flue gas recirculation effect on solid waste combustion[J]. Shandong Industrial Technology, 2014, (10): 43
[12]   宋少鹏, 卓建坤, 李娜, 等 燃料分级与烟气再循环对天然气低氮燃烧特性影响机理[J]. 中国电机工程学报, 2016, 36 (24): 6849- 6858
SONG Shao-peng, ZHUO Jian-kun, LI Na, et al Low NOx combustion mechanism of a natural gas burner with fuel-staged and flue gas recirculation [J]. Proceedings of the CSEE, 2016, 36 (24): 6849- 6858
[13]   胡满银, 乔欢, 杜欣 烟气再循环对炉内氮氧化物生成影响的数值模拟[J]. 华北电力大学学报: 自然科学版, 2007, (06): 77- 82
HU Man-yin, QIAO Huan, DU Xin Numerical simulations of the influence of flue gas recycle on nitrogen oxide formation in boiler[J]. Journal of North China Electric Power University: Natural Science Edition, 2007, (06): 77- 82
[14]   YANG Y B, YAMAUCHI H, NASSERZADEH V, et al Effects of fuel devolatilisation on the combustion of wood chips and incineration of simulated municipal solid wastes in apacked bed[J]. Fuel, 2003, 82 (18): 2205- 2221
doi: 10.1016/S0016-2361(03)00145-5
[15]   RYU C K, YANG Y B, NASSERZADEH V, et al Thermal reaction modeling of a large municipal solid waste incinerator[J]. Combustion Science and Technology, 2004, 176 (11): 1891- 1907
doi: 10.1080/00102200490504526
[16]   RYU C K, CHOI S 3-dimensional simulation of air mixing in the MSW incinerators[J]. Combustion Science and Technology, 1996, 119 (1-6): 155- 170
doi: 10.1080/00102209608951997
[17]   刘瑞媚, 刘玉坤, 王智化, 等 垃圾焚烧炉排炉二次风配风的CFD优化模拟[J]. 浙江大学学报: 工学版, 2017, 51 (03): 500- 507
LIU Rui-mei, LIU Yu-kun, WANG Zhi-hua, et al CFD simulation and optimization of secondary air distribution for waste combustion in grate furnace[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (03): 500- 507
[18]   吕钰, 王智化, 杨卫娟, 等 大型燃煤锅炉SNCR过程数值研究[J]. 浙江大学学报: 工学版, 2010, 44 (04): 750- 755
LV Yu, WANG Zhi-hua, YANG Wei-juan, et al Numerical study of SNCR process in coal-fired boiler with large capacity[J]. Journal of Zhejiang University: Engineering Science, 2010, 44 (04): 750- 755
[19]   岑可法, 姚强, 骆仲泱, 等. 燃烧理论与污染控制[M]. 北京: 机械工业出版社, 2004: 435-445.
[20]   刘瑞媚. 大型炉排炉垃圾焚烧过程的CFD模拟研究[D]. 浙江: 浙江大学, 2017.
LIU Rui-mei. CFD simulation study on combustion of municipal solid waste in the large-scale grate incinerator [D]. Zhejiang: Zhejiang University, 2017.
[21]   周克毅, 冷伟, 钟辉, 等. 锅炉原理[M]. 北京: 中国电力出版社, 2009: 292-294.
[22]   BALTASAR J, CARVALHO M G, COELHO P, et al Flue gas recirculation in a gas-fired laboratory furnace: measurements and modeling[J]. Fuel, 1997, 76 (10): 919- 929
doi: 10.1016/S0016-2361(97)00093-8
[23]   CHO E S, CHUNG S H Characteristics of NOx emission with flue gas dilution in air and fuel sides [J]. KSME International Journal, 2004, 18 (12): 2303- 2309
doi: 10.1007/BF02990235
[1] Huan-long LIU,Chi-xin XIE,Da-fa LI,Jia-wei WANG. Flow field distribution of splash lubrication of gearbox and churning gear torque loss[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 875-886.
[2] Hao ZHOU,Kun ZHANG,Ya-wei LI,Jia-kai ZHANG. Numerical simulation of fly ash deposition in coal and corn stalk co-combustion with dynamic mesh technique[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1139-1147.
[3] Yong-xiang GAO,Du HONG,You-wei CHENG,Li-jun WANG,Xi LI. Experimental and numerical simulation on sequential three phase jet-loop reactor[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 997-1005.
[4] Xiao-qiang XIE,Jian-guo YANG,Chao-yang ZHU,Chuan-huai LIU,Hong ZHAO,Zhi-hua WANG. Effect of bowl-shaped secondary air distribution on combustion efficiency and NOx mass concentration[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 220-227.
[5] Shi-tang KE,Wen-lin YU,Lu XU,Ling-yun DU,Wei YU,Qing YANG. Flow fields and aerodynamic loads of wind turbine considering yaw effect under wind and rain interaction[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1936-1945.
[6] ZHANG Xin, ZHANG Tian-hang, HUANG Zhi-yi, ZHANG Chi, KANG Cheng, WU Ke. Local loss and flow characteristic of dividing flow in bifurcated tunnel[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(3): 440-445.
[7] CHEN Wei, QIN Xian-rong, YANG Zhi-gang. Wind load characteristics analysis of mast and jib of tower crane[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(12): 2262-2270.
[8] CHEN Wen-zhuo, CHEN Yan, ZHANG Wei-ming, HE Shao-wei, LI Bo, JIANG Jun-ze. Numerical simulation for dynamic air spray painting of arc surfaces[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(12): 2406-2413.
[9] LIU Rui-mei, LIU Yu-kun, WANG Zhi-hua, LIU Ying-zu, HU Li-hua, SHAO Zhe-ru, CEN Ke-fa. CFD simulation and optimization of secondary air distribution for waste combustion in grate furnace[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(3): 500-507.
[10] HE Fang xiang, ZHAN Shu lin, QIAN Xiao qian, LAI Jun ying. Numerical simulation on insulation of flat roof ventilation layer[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(12): 2397-2402.
[11] YANG Mao,XU Shan-shan. Numerical simulation of aerodynamics of coupled flapping-pitching airfoil with trailing-edge flap[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(1): 149-153.
[12] LUO Yao-zhi, SUN Bin. Wind tunnel test and numerical simulation of wind-induced static pressure field around a building[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(7): 1148-1156.
[13] SUN Jing-yuan, LOU Jia-ming, HUANG Zheng-liang,WANG Jing-dai, JIANG Bin-bo. Acoustic emission detection and CFD simulation of a liquid spray process[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(2): 218-225.
[14] LI Qiang, LIU Shu-lian, YU Gui-chang, PAN Xiao-hong, ZHENG Shui-ying. Lubrication and stability analysis of nonlinear rotor-bearing system[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(10): 1729-1736.
[15] ZHOU Yin, YU Ya-nan, DUAN Yuan-yu. Numerical simulation on insulation of ventilated roof of profiled steel sheet[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(1): 112-117.