Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (10): 1892-1897    DOI: 10.3785/j.issn.1008-973X.2019.10.006
Mechanical and Energy Engineering     
Pressure matching of wave energy device based on digital hydraulic cylinder group
Yong-gang LIN(),Jian-qiang XU,Hong-wei LIU,Wei LI
State Key Laboratory of Fluid Power Transmission and Mechatronic System, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(1049KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A new digital hydraulic cylinder group was proposed to replace traditional hydraulic cylinder in order to solve the pressure distribution imbalance among different hydraulic branches when the hydraulic oil of distributed wave energy conversion systems collected together. The proposed hydraulic cylinder group consisted of several cylinders with different piston areas and the number of the connected cylinders was controlled by high-speed switching valves, which meant that different hydraulic branches’ pressures could be controlled to reach pressure balance among them. The modeling simulation and semi-hydraulic experiment results show that the distributed wave energy convertor systems based on digital hydraulic cylinder group can effectively reduce the pressure imbalance among different wave forced hydraulic branches compared with those based on traditional hydraulic cylinder. All different flaps of different branches can absorb wave energy to drive the hydraulic motor to run steadily.



Key wordswave energy      oscillating surge wave energy convertor      digital hydraulic cylinder group      distributed energy capture      integrated power generation     
Received: 26 August 2018      Published: 30 September 2019
CLC:  TK 79  
Cite this article:

Yong-gang LIN,Jian-qiang XU,Hong-wei LIU,Wei LI. Pressure matching of wave energy device based on digital hydraulic cylinder group. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1892-1897.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.10.006     OR     http://www.zjujournals.com/eng/Y2019/V53/I10/1892


基于数字液压缸组的波浪能装置压力匹配

为了解决分布式波浪能装置液压传动系统中不同支路液压油汇集时的压力不均衡问题,提出新型的数字液压缸组以替代常规的液压缸. 该液压缸组由多个面积不同的液压缸组成,由高速开关阀控制液压缸组切入传动系统的液压缸数目,这意味着可以控制不同液压支路的压力以实现不同支路之间的压力匹配. 通过建模仿真和半物理试验表明,与基于传统的液压缸的分布式波浪能装置相比,基于数字液压缸组的分布式波浪能装置能够有效减少在不同波浪载荷作用下的不同液压支路的压力不平衡,系统中不同浮力摆均能够吸收波浪能对外做功,驱动液压马达稳定持续运行.


关键词: 波浪能,  浮力摆波浪能发电装置,  数字液压缸组,  分布式捕能,  集中发电 
Fig.1 Schematic of digital hydraulic cylinder group
控制量 活塞总面
积状态
数字控
制编码
活塞面积
大(2-1 & 2-4)
活塞面积
中(2-2 & 2-5)
活塞面积
小(2-3 & 2-6)
0 0 0 无效状态 000
0 0 1 001
0 1 0 010
1 0 0 100
0 1 1 小+中 011
1 0 1 小+大 101
1 1 0 中+大 110
1 1 1 小+中+大 111
Tab.1 Coding numbers of digital hydraulic cylinder under different situations
Fig.2 Schematic of distributed wave energy capture and integrated power generation
Fig.3 Simulation model of digital hydraulic cylinder group and power generation system
Fig.4 Structural dynamics analysis of oscillating surge wave energy convertor
Fig.5 Simulated wave force on flap of oscillating surge wave energy convertor
Fig.6 Comparison of simulation results under different control strategies
Fig.7 Schematic and setup of semi-physical system
Fig.8 Curve of semi-physical experiments
[1]   LIN Y G, BAO J W, LIU H W, et al Review of hydraulic transmission technologies for wave power generation[J]. Renewable and Sustainable Energy Reviews, 2015, 50 (10): 194- 203
[2]   HENDERSON R Design, simulation, and testing of a novel hydraulic power take-off system for the Pelamis wave energy converter[J]. Renewable Energy, 2006, 31 (2): 271- 283
doi: 10.1016/j.renene.2005.08.021
[3]   HAI L, SVENSSON O, ISBERG J, et al Modelling a point absorbing wave energy converter by the equivalent electric circuit theory: a feasibility study[J]. Journal of Applied Physics, 2015, 117 (16): 899- 918
[4]   盛松伟, 张亚群, 王坤林, 等 鹰式波浪能发电装置发电系统研究[J]. 可再生能源, 2015, (9): 1422- 1426
SHENG Song-wei, ZHANG Ya-qun, WANG Kun-lin, et al Research on power generation system of Eagle wave energy generating device[J]. Renewable Energy, 2015, (9): 1422- 1426
[5]   FRANZITTA V, COLUCCI A, CURTO D, et al. A linear generator for a waveroller power device [C] // Oceans Conference. Aberdeen: [s. n.], 2017: 1-5.
[6]   NIEMI P O, LINJAMA M, LAAMANEN A, et al. Parallel pump-controlled multi-chamber cylinder[C] // Symposium on Fluid Power and Motion Control. Sarasota: ASME, 2014.
[7]   SONG W, SHI H, LIU P Simulation of oscillating buoywave energy generation system based on double-stroke hydraulic transmission[J]. Acta Energiae Solaris Sinica, 2016,
[8]   LINJAMA M, VIHTANEN H P, SIPOLA A, et al. Secondary controlled multi-chamber hydraulic cylinder [C] // Proceedings of the 11th Scandinavian International Conference on Fluid Power (SICFP09). Sweden: LiU-Tryck, Linkoeping, 2009.
[9]   CAO W, LI D, CHEN Z, et al. Research on model and simulation of hydraulic lifting system of the wave power generating platform based on AMESim [C] // International Industrial Informatics and Computer Engineering Conference. Xi’an: Atlantis Press, 2015.
[10]   ZHU L J Simulation of the hydraulic hybrid system based on AMESim[J]. Energy Engineering, 2017, (1): 17- 23
[11]   黄炜. 浮力摆式波浪能发电装置仿真与实验研究[D]. 杭州: 浙江大学, 2012.
HUANG Wei. Simulation and experimental study of buoyancy pendulum wave power generation equipment [D]. Hangzhou: Zhejiang University, 2012.
[12]   YUKIO K, MATTHIAS L, HUBERTUS M. Simulation of a ocean wave energy converter using hydraulic transmission [C] // 7th International Fluid Power Conference. Aachen: [s. n.], 2010: 1-12.
[13]   张大海. 浮力摆式波浪能发电装置关键技术研究[D]. 杭州: 浙江大学, 2011.
ZHANG Da-hai. Research on key technologies of buoyancy pendulum wave power plant [D]. Hangzhou: Zhejiang University, 2011.
[14]   滕斌, 陈文. 摆式波能转换装置的水动力分析模型[C]//第十五届中国海洋(岸)工程学术讨论会论文集. 太原: 海洋出版社, 2011: 653-658.
TENG Bin, CHEN Wen. Hydrodynamic analysis model of tilting wave energy converter [C] // Proceedings of the 15th China Ocean (Coastal) Engineering Symposium. Taiyuan: Ocean Press, 2011: 653-658.
[15]   MICHAILIDES C, ANGELIDES D Modeling of energy extraction and behavior of a flexible floating breakwater[J]. Applied Ocean Research, 2012, 35 (1): 77- 94
[1] Hang-hui HU,Zheng-zhi DENG,Yan-ming YAO,Xi-zeng ZHAO. Theoretical and numerical studies of off-shore oscillating water column wave energy device[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 325-335.