Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (8): 1482-1489    DOI: 10.3785/j.issn.1008-973X.2021.08.009
    
Seq2Seq prediction of bus trajectory on exclusive bus lanes
Nan ZHANG(),Hong-zhao DONG*(),Yi-ni SHE
Joint Institute of Intelligent Transportation System, Zhejiang University of Technology, Hangzhou 310023, China
Download: HTML     PDF(1648KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The trajectory of bus vehicles from the upstream to the downstream of road in a relatively long period still demonstrated strong uncertainty even on condition of exclusive bus lanes, due to the influence of ahead vehicles, platform capacity, pedestrian crossing and other factors. Time series models which only operate on individual targets in simple scenarios were not efficiently utilized for the impact of uncertainty on the prediction of bus trajectory. The future global trajectory sequence was suggested to be transformed into a high-dimensional time series composed of multiple simple short-term local trajectory sequences, aiming at the above problem. Subsequently, a simple and hierarchical recurrent encoder-decoder architecture was established based on the recurrent neural network to describe the mapping relationship between the local sequence and the globe sequence in the high-dimensional time series. Starting from the current period trajectory sequence, each local sequence of the high-dimensional time series was cyclically predicted until the final future global sequence was obtained. Finally, the two types of architecture were trained and tested by using GPS data of bus trajectory measured on Wensan Road in Hangzhou, China. Results show that the above method outperforms multi-step sequence to sequence method and the hierarchical recurrent encoder-decoder architecture obtains the best prediction results and generalization performance to complex environment.



Key wordshigh-dimensional time series      recurrent neural networks (RNN)      sequence to sequence (Seq2Seq)      hierarchical recurrent encoder-decoder (HRED)      intelligent traffic system (ITS)     
Received: 03 November 2020      Published: 01 September 2021
CLC:  U 491.2  
Fund:  国家自然科学基金资助项目(61773347);浙江省公益计划资助项目(LGF18E080018)
Corresponding Authors: Hong-zhao DONG     E-mail: zhangn_2007@163.com;its@zjut.edu.cn
Cite this article:

Nan ZHANG,Hong-zhao DONG,Yi-ni SHE. Seq2Seq prediction of bus trajectory on exclusive bus lanes. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1482-1489.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.08.009     OR     https://www.zjujournals.com/eng/Y2021/V55/I8/1482


公交专用道条件下公交车辆轨迹的Seq2Seq预测

即使在公交专用道条件下,因受前方车辆、站台通行能力、行人过街等因素影响,由路段上游到下游停车线持续一定时长的公交车辆轨迹仍然表现出较强的不确定性. 简单场景下的单一目标时间序列模型难以有效应对不确定性对公交车辆轨迹预测的影响. 针对上述问题,提出将车辆通过路段的整体轨迹表示为由多个相对简单的局部时间序列顺序组成的高维时间序列,应用循环神经网络的单层和多层循环编码器-解码器结构建立高维时间序列中局部序列和整体序列的映射关系,从当前时段轨迹序列开始依次循环预测每个局部序列直到获得未来时段的整体序列. 在实验验证中,采用杭州市文三路公交线路的实测GPS轨迹数据对2种结构进行训练和测试. 结果表明,所提方法优于现有流行的多步循环序列到序列方法,其中多层结构预测结果和复杂场景的泛化性能均优于单层结构.


关键词: 高维时间序列,  循环神经网络(RNN),  序列到序列(Seq2Seq),  多层循环编码器-解码器(HRED),  智能交通系统(ITS) 
Fig.1 Local sequence definition for global sequence prediction
Fig.2 Encoder-decoder architecture of multi-step Seq2Seq
Fig.3 Recurrent encoder-decoder architecture
Fig.4 Hierarchical recurrent encoder-decoder archite
Fig.5 Road section of bus lines in experiment
实验 局部序列 轨迹样本 训练集 验证集 测试集
1 59337 9221 6918 921 1382
2 52909 8753 ? ? 1311
Tab.1 Sample number of training set in experiment
模型
结构
隐层状
态维度
实验1 实验2
MAE/
10?2
MAPE/
10?2
RMSE/
10?2
MAE/
10?2
MAPE/
10?2
RMSE/
10?2
多步
预测
32 3.72 7.95 5.47 3.97 8.02 5.51
64 3.59 7.63 5.31 3.78 7.90 5.42
128 3.56 7.39 5.26 3.51 7.44 5.20
单层循
环预测
32 3.59 7.71 5.29 3.65 7.84 5.37
64 3.54 7.49 5.21 3.59 7.60 5.25
128 3.42 7.25 5.04 3.49 7.31 5.12
多层循
环预测
32 3.53 7.46 5.10 3.61 7.63 5.19
64 3.29 6.96 4.87 3.34 6.99 4.93
128 3.26 6.76 4.79 3.30 6.86 4.83
Tab.2 Evaluation of three architecture prediction results
Fig.6 Loss curve of three architectures during training
Fig.7 Comparison of global trajectory predicted by three architectures
[1]   LI L, JIANG R, HE Z B, et al Trajectory data-based traffic flow studies: a revisit[J]. Transportation Research Part C, 2020, 114: 225- 240
doi: 10.1016/j.trc.2020.02.016
[2]   YAO J, TAN C, TANG K An optimization model for arterial coordination control based on sampled vehicle trajectories: the stream model[J]. Transportation Research Part C, 2019, 109: 211- 232
doi: 10.1016/j.trc.2019.10.014
[3]   WANG L, ABDEL-ATY M, MA W J, et al Quasi-vehicle-trajectory-based real-time safety analysis for expressways[J]. Transportation Research Part C, 2019, 103: 30- 38
doi: 10.1016/j.trc.2019.04.003
[4]   XIEK, OZBAY K, YANG H, et al Mining automatically extracted vehicle trajectory data for proactive safety analytics[J]. Transportation Research Part C, 2019, 106: 61- 72
doi: 10.1016/j.trc.2019.07.004
[5]   LIU J, HAN K, CHEN X, et al Spatial-temporal inference of urban traffic emissions based on taxi trajectories and multi-source urban data[J]. Transportation Research Part C, 2019, 106: 145- 165
doi: 10.1016/j.trc.2019.07.005
[6]   HU J, PARK B B, LEE Y J Coordinated transit signal priority supporting transit progression under connected vehicle technology[J]. Transportation Research Part C, 2015, 55: 393- 408
doi: 10.1016/j.trc.2014.12.005
[7]   HU J, PARK B B, LEE Y J Transit signal priority accommodating conflicting requests under connected vehicles technology[J]. Transportation Research Part C, 2016, 69: 173- 192
doi: 10.1016/j.trc.2016.06.001
[8]   TRUONG L T, CURRIE G, WALLANCE M, et al Coordinated transit signal priority model considering stochastic bus arrival time[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20 (4): 1269- 1277
doi: 10.1109/TITS.2018.2844199
[9]   KIM H, CHENG Y, CHANG G Variable signal progression bands for transit vehicles under dwell time uncertainty and traffic queues[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20 (1): 109- 122
doi: 10.1109/TITS.2018.2801567
[10]   WU W, HEAD L, YAN S H, et al Development and evaluation of bus lanes with intermittent and dynamic priority in connected vehicle environment[J]. Journal of Intelligent Transportation Systems, 2018, 22 (4): 301- 310
doi: 10.1080/15472450.2017.1313704
[11]   BERREBI S J, HANS E, CHIABAUT N, et al Comparing bus holding methods with and without real-time predictions[J]. Transportation Research Part C, 2018, 87: 197- 211
doi: 10.1016/j.trc.2017.07.012
[12]   LIM B, ZOHREN S. Time series forecasting with deep learning: a survey [EB/OL]. [2020-09-27]. https://arxiv.org/abs/2004.13408.
[13]   HOCHREITER S, SCHMIDHUBER J Long short-term memory[J]. Neural Computation, 1997, 9 (8): 1735- 1780
doi: 10.1162/neco.1997.9.8.1735
[14]   CHO K, VAN MERRIUENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Doha: [s.n.], 2014: 1724–1734.
[15]   CHO K, VAN MERRIUENBOER B, BAHDANAU D. On the properties of neural machine translation: encoder-decoder approaches [EB/OL]. [2020-10-01]. https://arxiv.org/abs/1409.1259.
[16]   SUTSKEVER I, VINYALS O, LE Q V. Sequence to sequence learning with neural networks[C]// Proceedings of the 2014 Advances in Neural Information Processing Systems. Montreal: [s.n.], 2014: 3104–3112.
[17]   WANG S, CAO J, CHEN H, et al SeqST-GAN: Seq2Seq generative adversarial nets for multi-step urban crowd flow prediction[J]. ACM Transactions on Spatial Algorithms and Systems (TSAS), 2020, 6 (4): 1- 24
[18]   QIN Y, SONG D, CHEN H, et al. A dual-stage attention-based recurrent neural network for time series prediction[C]// Proceedings of 26th International Joint Conference on Artificial Intelligence. Melbourne: [s.n.], 2017: 2627-2633.
[19]   KIM B D, KANG C M, KIM J, et al. Probabilistic vehicle trajectory prediction over occupancy grid map via recurrent neural network[C]// Proceedings of the IEEE 20th International Conference on Intelligent Transportation Systems (ITSC). Yokohama: [s.n.], 2017: 399-404.
[20]   PARK SH, KIM B D, KANG C M, et al. Sequence-to-sequence prediction of vehicle trajectory via LSTM encoder-decoder architecture[C]// Proceedings of 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu: [s.n.], 2018: 1672-1678.
[21]   MESSAOUD K, YAHIAOUI I, VERROUST-BLONDET A, et al Attention based vehicle trajectory prediction[J]. IEEE Transactions on Intelligent Vehicles, 2020, 6 (1): 175- 185
[22]   SEN R, YU H F, DHILLON I S. Think globally, act locally: a deep neural network approach to high-dimensional time series forecasting[C]// Proceedings of Advances in Neural Information Processing Systems (NIPS). Vancouver: [s.n.], 2019: 4837-4846.
[23]   BOX G, JENKIN G. Time Series analysis: forecasting and control[M]. San Francisco: Holden-Day, 1970.
[24]   BRAHIM-BELHOUARI S, BERMAK A Gaussian process for nonstationary time series prediction[J]. Computational Stats and Data Analysis, 2004, 47 (4): 705- 712
doi: 10.1016/j.csda.2004.02.006
[25]   AARON VAN DEN O, DIELEMAN S, ZEN H, et al. Wavenet: a generative model for raw audio [EB/OL]. [2020-10-01]. https://arxiv.org/abs/1609.03499.
[26]   SORDONI A, BENGIO Y, VAHABI H, et al. A hierarchical recurrent encoder-decoder for generative context-aware query suggestion[C]// Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. Melbourne: [s.n.], 2015: 553-562.
[27]   LOSHCILOV I, HUTTER F. Decoupled weight decay regularization[C]// Proceedings of 7th International Conference on Learning Representations. New Orleans: [s.n.], 2019.
[28]   KINGMA D, BA J. Adam: a method for stochastic optimization[C]// Proceedings of 3rd International Conference on Learning Representations. San Diego: [s.n.], 2015.
[29]   DONG H Z, ZHAO C X, FU F J Sharing bus lanes: a new lanes multiplexing-based method using a dynamic time slice policy[J]. Transport, 2018, 1- 38
[30]   BAHDANAU D, KYUNGHYUN C K, BENGIO Y. Neural machine translation by jointly learning to align and translate[C]// Proceedings of 3rd International Conference on Learning Representations. San Diego: [s.n.], 2015.
[31]   HOU L, XIN L, LI E S, et al Interactive trajectory prediction of surrounding road users for autonomous driving using structural-LSTM network[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21 (11): 4615- 4625
[1] Jia-qi ZENG,Dian-hai WANG. Improved numerical method for two-way arterial signal coordinate control[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2386-2394.
[2] ZHOU Dan, MA Xiao long, JIN Sheng, WANG Dian hai. Modeling influencing factors of vehicle passing rate #br# in mixed bicycle traffic flow[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(9): 1672-1678.