1. Engineering Research Center of Advanced Driving Energy-saving Technology, Ministry of Education, Chengdu 610031, China 2. School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China
Gearbox splash lubrication has the characteristics of gear rotation, two-phase flow and complex flow field distribution, which is difficult to study through theory or experiment. In terms of computational fluid dynamics, the traditional grid method has the disadvantages of difficulty in processing dynamic grids and high computational cost. In view of the above problems, the moving particle semi-implicit method (MPS) was used to carry out the simulation analysis of the gearbox splash lubrication. At low speeds, different lubricating oil models and temperature conditions were set, and it was found that the lubricating oil flow field distribution was in good agreement with the test results. At high speeds, different oil temperature conditions were set, and it was found that compared with the smooth particle hydrodynamics method (SPH), the accuracy of the gear churning torque loss obtained by the MPS method was higher. It can accurately predict the trend of torque loss, but the error of torque loss prediction is relatively large, and further improvement and perfection are needed. The MPS method strictly guarantees the incompressibility of the fluid. It is easy to track and capture the free surface with large deformation and strong non-linearity The MPS method can be used to analyze and predict the distribution of splash lubrication flow field of the gearbox well.
Huan-long LIU,Chi-xin XIE,Da-fa LI,Jia-wei WANG. Flow field distribution of splash lubrication of gearbox and churning gear torque loss. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 875-886.
Tab.2Low speed operating condition parameters of gearbox splash lubrication
工况
$\theta $ /℃
$h$ /mm
${n_{\rm{w}}}$ /(r·min?1)
润滑油型号
1
60
?20.0
1444
FVA3
2
60
?20.0
3474
FVA3
3
90
?20.0
1444
FVA3
4
90
?20.0
3474
FVA3
5
120
?20.0
1444
FVA3
6
120
?20.0
3474
FVA3
Tab.3High speed operating condition parameters of gearbox splash lubrication
型号
ISO VG
$\;\rho $/ (kg·m?3)
$\gamma $/(mm2·s?1)
θ=40 ℃
θ=60 ℃
θ=90 ℃
θ=100 ℃
θ=120 ℃
FVA3
100
864
95
40
15
10.7
5
FVA2
32
855
32
?
?
5.4
?
Tab.4Density and viscosity of different types of lubricants
Fig.4Geometric model of gearbox splash lubrication
低转速工况
${t_{\rm{s}}}$/h
高转速工况
${t_{\rm{s}}}$/h
1
140.2
1
23.6
2
76.7
2
14.7
3
61.0
3
26.2
4
153.3
4
17.1
5
85.3
5
30.1
6
42.3
6
19.5
7
171.4
?
?
8
101.1
?
?
9
90.1
?
?
Tab.5Computational time of gearbox splash lubrication under different operating conditions
$h$/mm
粒子数/个
?32.2
565538
?20.0
383103
Tab.6Number of particles in gearbox with splash lubrication at different liquid levels
${n_{\rm{w}}}$ /(r·min?1)
硬件
${d_{\rm{p}}}$/mm
${t_{\rm{p}}}$/s
$\Delta t$/s
${t_{\rm{s}}}$/h
1444
NVIDIA Tesla K40m
1.0
2
1.9×10?6
72
3474
NVIDIA Tesla K40m
1.0
2
9.1×10?7
92
Tab.7Basic parameters of SPH numerical simulation
Fig.5Oil distribution of gearbox splash lubrication
Fig.6Comparison of simulation and test of gearbox splash lubrication with FVA3 lubricant
Fig.7Comparison of simulation and test of gearbox splash lubrication with FVA3 lubricant
Fig.8Distribution of velocity field of gearbox splash lubrication under different operating conditions
Fig.9Time domain curve of gear churning torque loss at 1444 r/min
Fig.10Comparison of test and MPS simulated gear churning torque loss at 1444 r/min
Fig.11Comparison of test and MPS simulated gear churning torque loss at 3474 r/min
${n_{\rm{w}}}$/(r·min?1)
$\theta $/℃
${T_{\rm{m}}}$/(N·m)
${T_{\rm{s}}}$/(N·m)
${T_{\rm{e}}}$/(N·m)
${\delta _{\rm{m}}}$/%
${\delta _{\rm{s}}}$/%
1444
60
0.128
0.123
0.318
60
61
1444
90
0.106
0.098
0.297
64
67
1444
120
0.093
0.085
0.277
66
69
3474
60
0.307
0.261
0.584
47
55
3474
90
0.349
0.216
0.711
51
70
3474
120
0.650
0.199
1.130
43
82
Tab.8Errors of test and simulated gear churning torque loss under different operating conditions
[1]
CONCLI F, CONRADO E, GORLA C Analysis of power losses in an industrial planetary speed reducer: measurements and computational fluid dynamics calculations[J]. Journal of Engineering Tribology, 2014, 44 (2): 1- 3
[2]
GORLA C, CONCLI F, STAHL K, et al Hydraulic losses of a gearbox: CFD analysis and experiments[J]. Tribology International, 2013, 66: 337- 344
doi: 10.1016/j.triboint.2013.06.005
[3]
CONCLI F, GORLA C Numerical modeling of the power losses in geared transmissions: windage, churning and cavitation simulations with a new integrated approach that drastically reduces the computational effort[J]. Tribology International, 2016, 103: 58- 68
doi: 10.1016/j.triboint.2016.06.046
[4]
LIU H, JURKSCHAT T, LOHNER T, et al Detailed investigations on the oil flow in dip-lubricated gearboxes by the finite volume CFD method[J]. Lubricants, 2018, 6 (2): 47
doi: 10.3390/lubricants6020047
[5]
LIU H, JURKSCHAT T, LOHNER T, et al Determination of oil distribution and churning power loss of gearboxes by finite volume CFD method[J]. Tribology International, 2017, 109: 346- 354
doi: 10.1016/j.triboint.2016.12.042
[6]
沈林, 阮登芳, 涂攀 基于CFD方法的啮合齿轮搅油损失仿真分析[J]. 机械传动, 2018, 42 (11): 113- 116 SHEN Lin, RUAN Deng-fang, TU Pan Simulation analysis of meshing gear churning power loss based on CFD method[J]. Journal of Mechanical Transmission, 2018, 42 (11): 113- 116
[7]
HU X, JIANG Y, LUO C, et al Churning power losses of a gearbox with spiral bevel geared transmission[J]. Tribology International, 2019, 129: 398- 406
doi: 10.1016/j.triboint.2018.08.041
[8]
JIANG Y, HU X, HONG S, et al Influences of an oil guide device on splash lubrication performance in a spiral bevel gearbox[J]. Tribology International, 2019, 136: 155- 164
doi: 10.1016/j.triboint.2019.03.048
[9]
孙凯, 刘少军, 胡小舟 基于动网格的中减速器飞溅润滑内部流场分析[J]. 润滑与密封, 2017, 42 (8): 131- 134 SUN Kai, LIU Shao-jun, HU Xiao-zhou Analysis on internal flow field of middle reducer splash lubrication based on dynamic mesh[J]. Lubrication Engineering, 2017, 42 (8): 131- 134
doi: 10.3969/j.issn.0254-0150.2017.08.025
[10]
HU X, LI P, WU M Influence of the dynamic motion of a splash-lubricated gearbox on churning power losses[J]. Energies, 2019, 12 (17): 3225
doi: 10.3390/en12173225
[11]
GROENENBOOM P, CARTWRIGHT B, MCGUCKIN D, et al Numerical studies and industrial applications of the hybrid SPH-FE method[J]. Computers and Fluids, 2019, 184: 40- 63
doi: 10.1016/j.compfluid.2019.03.012
[12]
赵迁, 杨良会, 赵春艳, 等. 基于SPH方法的纯电动车减速器润滑仿真 [C]// 2018中国汽车工程学会年会论文集. 上海: SAECCE, 2018: 882-886. ZHAO Qian, YANG Liang-hui, ZHAO Chun-yan, et al. The Lubrication simulation of pure electric gearbox based on SPH [C]// Proceedings of SAE 2018. Shanghai: SAECCE, 2018: 882-886.
[13]
JI Z, STANIC M, HARTONO E A, et al Numerical simulations of oil flow inside a gearbox by smoothed particle hydrodynamics (SPH) method[J]. Tribology International, 2018, 127: 47- 58
doi: 10.1016/j.triboint.2018.05.034
[14]
LIU H, ARFAOUI G, STANIC M, et al Numerical modelling of oil distribution and churning gear power losses of gearboxes by smoothed particle hydrodynamics[J]. Journal of Engineering Tribology, 2019, 233 (1): 74- 86
[15]
皮彪, 丁上, 王叶枫, 等 基于MPS的某重型汽车主减速器润滑系统优化与分析[J]. 润滑与密封, 2018, 43 (1): 98- 103 PI Biao, DING Shang, WANG Ye-feng, et al Optimization and analysis of main reducer lubrication for heavy vehicle[J]. Lubrication Engineering, 2018, 43 (1): 98- 103
doi: 10.3969/j.issn.0254-0150.2018.01.019
[16]
李晏, 皮彪, 王叶枫, 等 基于移动粒子半隐式法的齿轮搅油损失分析与试验验证[J]. 同济大学学报: 自然科学版, 2018, 46 (3): 368- 372 LI Yan, PI Biao, WANG Ye-feng, et al Analysis and validation of churning loss of helical gear based on moving particle semi-implicit method[J]. Journal of Tongji University: Natural Science, 2018, 46 (3): 368- 372
[17]
KOSHIZUKA S A particle method for incompressible viscous flow with fluid fragmentation[J]. Progress in Computational Fluid Dynamics, 1995, 4: 29- 46
[18]
孙学尧. 基于缓解压力振荡MPS法的数值水池研究[D]. 上海: 上海交通大学, 2011: 15. SUN Xue-yao. Research on numerical wave tank based on pressure fluctuate reducing MPS method[D]. Shanghai: Shanghai Jiao Tong University, 2011: 15.
[19]
尹金. 基于MPS法的不可压流体的研究与模拟[D]. 合肥: 安徽大学, 2011: 44. YIN Jin. Research and simulation of incompressible fluid based on MPS method[D]. Hefei: Anhui University, 2011: 44.
[20]
TANAKA M, MASUNAGA T Stabilization and smoothing of pressure in MPS method by quasi-compressibility[J]. Journal of Computational Physics, 2010, 229 (11): 4279- 4290
doi: 10.1016/j.jcp.2010.02.011
[21]
彭钱磊, 桂良进, 范子杰 基于齿面移动法的齿轮飞溅润滑性能数值分析与验证[J]. 农业工程学报, 2015, 31 (10): 51- 56 PENG Qian-lei, GUI Liang-jin, FAN Zi-jie Gear splash lubrication numerical simulation and validation based on teeth-face-moving method[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31 (10): 51- 56
doi: 10.11975/j.issn.1002-6819.2015.10.007
[22]
YANG C, ZHANG H Numerical simulation of the interactions between fluid and structure in application of the MPS method assisted with the large eddy simulation method[J]. Ocean Engineering, 2018, 155 (1): 55- 64
[23]
SEETHARAMAN S, KAHRAMAN A, MOORHEAD M D, et al Oil churning power losses of a gear pair: experiments and model validation[J]. Journal of Tribology, 2009, 131 (2): 022202
doi: 10.1115/1.3085942
[24]
梁文宏, 刘凯, 崔亚辉 直齿轮搅油功率损失的实验研究[J]. 实验力学, 2015, 30 (2): 239- 244 LIANG Wen-hong, LIU Kai, CUI Ya-hui Experimental study of power loss in spur gear churning[J]. Journal of Experimental Mechanics, 2015, 30 (2): 239- 244
doi: 10.7520/1001-4888-14-117
[25]
CHERNORAY V, JAHANMIRI M Experimental study of multiphase flow in a model gearbox[J]. WIT Transactions on Engineering Sciences, 2011, 70: 153- 164