Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (5): 875-886    DOI: 10.3785/j.issn.1008-973X.2021.05.008
    
Flow field distribution of splash lubrication of gearbox and churning gear torque loss
Huan-long LIU1,2(),Chi-xin XIE1,2,Da-fa LI1,2,Jia-wei WANG1,2
1. Engineering Research Center of Advanced Driving Energy-saving Technology, Ministry of Education, Chengdu 610031, China
2. School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China
Download: HTML     PDF(1504KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Gearbox splash lubrication has the characteristics of gear rotation, two-phase flow and complex flow field distribution, which is difficult to study through theory or experiment. In terms of computational fluid dynamics, the traditional grid method has the disadvantages of difficulty in processing dynamic grids and high computational cost. In view of the above problems, the moving particle semi-implicit method (MPS) was used to carry out the simulation analysis of the gearbox splash lubrication. At low speeds, different lubricating oil models and temperature conditions were set, and it was found that the lubricating oil flow field distribution was in good agreement with the test results. At high speeds, different oil temperature conditions were set, and it was found that compared with the smooth particle hydrodynamics method (SPH), the accuracy of the gear churning torque loss obtained by the MPS method was higher. It can accurately predict the trend of torque loss, but the error of torque loss prediction is relatively large, and further improvement and perfection are needed. The MPS method strictly guarantees the incompressibility of the fluid. It is easy to track and capture the free surface with large deformation and strong non-linearity The MPS method can be used to analyze and predict the distribution of splash lubrication flow field of the gearbox well.



Key wordssplash lubrication      moving particle semi-implicit method (MPS)      flow field distribution      torque loss      computational fluid dynamics (CFD)     
Received: 28 April 2020      Published: 10 June 2021
CLC:  U 273.1  
Fund:  四川省科技厅重点研发资助项目(2018GZ0450)
Cite this article:

Huan-long LIU,Chi-xin XIE,Da-fa LI,Jia-wei WANG. Flow field distribution of splash lubrication of gearbox and churning gear torque loss. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 875-886.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.05.008     OR     http://www.zjujournals.com/eng/Y2021/V55/I5/875


齿轮箱飞溅润滑流场分布和搅油力矩损失

齿轮箱飞溅润滑具有齿轮旋转、两相流及流场分布复杂等特点,难以通过理论或实验进行研究;在计算流体动力学方法上,传统的网格法存在动网格处理困难、计算成本高的弊端.针对以上问题,提出运用移动粒子半隐式法(MPS)对齿轮箱飞溅润滑开展仿真分析. 在低转速时,设置不同润滑油型号和温度工况,发现润滑油流场分布情况与试验结果较一致. 在高转速时,设置不同的油温工况,发现相对光滑粒子流体动力学方法(SPH),基于MPS方法数值计算所得的齿轮搅油力矩损失准确度更高,能够准确预测力矩损失变化趋势,但力矩损失预测误差较大,须进一步改进和完善. MPS方法严格保证了流体的不可压缩性,易于追踪捕捉大变形和强非线性化的自由液面,能够较好地分析预测齿轮箱飞溅润滑流场的分布效果.


关键词: 飞溅润滑,  移动粒子半隐式法(MPS),  流场分布,  力矩损失,  计算流体动力学(CFD) 
Fig.1 Schematic diagram of MPS gradient model
Fig.2 MPS boundary particle layout
参数 ${m_{\rm{n}}}$/mm $a$/mm $b$/mm ${\alpha _{\rm{n}}}$/(°) ${\;\beta _0}$/(°) $z$/个 ${d_{\rm{a}}}$/mm $x$
主动轮 4.5 91.5 14 20 0 16 82.45 0.182
从动轮 4.5 91.5 14 20 0 24 118.35 0.171
Tab.1 Geometric parameters of FZG C-PT gear
Fig.3 Schematic diagram of FZG gear testing rig
工况 ${n_{\rm{o}}}$ /(r·min?1) 润滑油型号 $\theta $ /℃ $h$ /mm
1 240 FVA3 40 ?32.2
2 360 FVA3 40 ?32.2
3 540 FVA3 40 ?32.2
4 240 FVA3 100 ?32.2
5 360 FVA3 100 ?32.2
6 540 FVA3 100 ?32.2
7 240 FVA2 40 ?32.2
8 360 FVA2 40 ?32.2
9 540 FVA2 40 ?32.2
Tab.2 Low speed operating condition parameters of gearbox splash lubrication
工况 $\theta $ /℃ $h$ /mm ${n_{\rm{w}}}$ /(r·min?1) 润滑油型号
1 60 ?20.0 1444 FVA3
2 60 ?20.0 3474 FVA3
3 90 ?20.0 1444 FVA3
4 90 ?20.0 3474 FVA3
5 120 ?20.0 1444 FVA3
6 120 ?20.0 3474 FVA3
Tab.3 High speed operating condition parameters of gearbox splash lubrication
型号 ISO VG $\;\rho $/
(kg·m?3)
$\gamma $/(mm2·s?1)
θ=40 ℃ θ=60 ℃ θ=90 ℃ θ=100 ℃ θ=120 ℃
FVA3 100 864 95 40 15 10.7 5
FVA2 32 855 32 ? ? 5.4 ?
Tab.4 Density and viscosity of different types of lubricants
Fig.4 Geometric model of gearbox splash lubrication
低转速工况 ${t_{\rm{s}}}$/h 高转速工况 ${t_{\rm{s}}}$/h
1 140.2 1 23.6
2 76.7 2 14.7
3 61.0 3 26.2
4 153.3 4 17.1
5 85.3 5 30.1
6 42.3 6 19.5
7 171.4 ? ?
8 101.1 ? ?
9 90.1 ? ?
Tab.5 Computational time of gearbox splash lubrication under different operating conditions
$h$/mm 粒子数/个
?32.2 565538
?20.0 383103
Tab.6 Number of particles in gearbox with splash lubrication at different liquid levels
${n_{\rm{w}}}$ /(r·min?1) 硬件 ${d_{\rm{p}}}$/mm ${t_{\rm{p}}}$/s $\Delta t$/s ${t_{\rm{s}}}$/h
1444 NVIDIA Tesla K40m 1.0 2 1.9×10?6 72
3474 NVIDIA Tesla K40m 1.0 2 9.1×10?7 92
Tab.7 Basic parameters of SPH numerical simulation
Fig.5 Oil distribution of gearbox splash lubrication
Fig.6 Comparison of simulation and test of gearbox splash lubrication with FVA3 lubricant
Fig.7 Comparison of simulation and test of gearbox splash lubrication with FVA3 lubricant
Fig.8 Distribution of velocity field of gearbox splash lubrication under different operating conditions
Fig.9 Time domain curve of gear churning torque loss at 1444 r/min
Fig.10 Comparison of test and MPS simulated gear churning torque loss at 1444 r/min
Fig.11 Comparison of test and MPS simulated gear churning torque loss at 3474 r/min
${n_{\rm{w}}}$/(r·min?1) $\theta $/℃ ${T_{\rm{m}}}$/(N·m) ${T_{\rm{s}}}$/(N·m) ${T_{\rm{e}}}$/(N·m) ${\delta _{\rm{m}}}$/% ${\delta _{\rm{s}}}$/%
1444 60 0.128 0.123 0.318 60 61
1444 90 0.106 0.098 0.297 64 67
1444 120 0.093 0.085 0.277 66 69
3474 60 0.307 0.261 0.584 47 55
3474 90 0.349 0.216 0.711 51 70
3474 120 0.650 0.199 1.130 43 82
Tab.8 Errors of test and simulated gear churning torque loss under different operating conditions
[1]   CONCLI F, CONRADO E, GORLA C Analysis of power losses in an industrial planetary speed reducer: measurements and computational fluid dynamics calculations[J]. Journal of Engineering Tribology, 2014, 44 (2): 1- 3
[2]   GORLA C, CONCLI F, STAHL K, et al Hydraulic losses of a gearbox: CFD analysis and experiments[J]. Tribology International, 2013, 66: 337- 344
doi: 10.1016/j.triboint.2013.06.005
[3]   CONCLI F, GORLA C Numerical modeling of the power losses in geared transmissions: windage, churning and cavitation simulations with a new integrated approach that drastically reduces the computational effort[J]. Tribology International, 2016, 103: 58- 68
doi: 10.1016/j.triboint.2016.06.046
[4]   LIU H, JURKSCHAT T, LOHNER T, et al Detailed investigations on the oil flow in dip-lubricated gearboxes by the finite volume CFD method[J]. Lubricants, 2018, 6 (2): 47
doi: 10.3390/lubricants6020047
[5]   LIU H, JURKSCHAT T, LOHNER T, et al Determination of oil distribution and churning power loss of gearboxes by finite volume CFD method[J]. Tribology International, 2017, 109: 346- 354
doi: 10.1016/j.triboint.2016.12.042
[6]   沈林, 阮登芳, 涂攀 基于CFD方法的啮合齿轮搅油损失仿真分析[J]. 机械传动, 2018, 42 (11): 113- 116
SHEN Lin, RUAN Deng-fang, TU Pan Simulation analysis of meshing gear churning power loss based on CFD method[J]. Journal of Mechanical Transmission, 2018, 42 (11): 113- 116
[7]   HU X, JIANG Y, LUO C, et al Churning power losses of a gearbox with spiral bevel geared transmission[J]. Tribology International, 2019, 129: 398- 406
doi: 10.1016/j.triboint.2018.08.041
[8]   JIANG Y, HU X, HONG S, et al Influences of an oil guide device on splash lubrication performance in a spiral bevel gearbox[J]. Tribology International, 2019, 136: 155- 164
doi: 10.1016/j.triboint.2019.03.048
[9]   孙凯, 刘少军, 胡小舟 基于动网格的中减速器飞溅润滑内部流场分析[J]. 润滑与密封, 2017, 42 (8): 131- 134
SUN Kai, LIU Shao-jun, HU Xiao-zhou Analysis on internal flow field of middle reducer splash lubrication based on dynamic mesh[J]. Lubrication Engineering, 2017, 42 (8): 131- 134
doi: 10.3969/j.issn.0254-0150.2017.08.025
[10]   HU X, LI P, WU M Influence of the dynamic motion of a splash-lubricated gearbox on churning power losses[J]. Energies, 2019, 12 (17): 3225
doi: 10.3390/en12173225
[11]   GROENENBOOM P, CARTWRIGHT B, MCGUCKIN D, et al Numerical studies and industrial applications of the hybrid SPH-FE method[J]. Computers and Fluids, 2019, 184: 40- 63
doi: 10.1016/j.compfluid.2019.03.012
[12]   赵迁, 杨良会, 赵春艳, 等. 基于SPH方法的纯电动车减速器润滑仿真 [C]// 2018中国汽车工程学会年会论文集. 上海: SAECCE, 2018: 882-886.
ZHAO Qian, YANG Liang-hui, ZHAO Chun-yan, et al. The Lubrication simulation of pure electric gearbox based on SPH [C]// Proceedings of SAE 2018. Shanghai: SAECCE, 2018: 882-886.
[13]   JI Z, STANIC M, HARTONO E A, et al Numerical simulations of oil flow inside a gearbox by smoothed particle hydrodynamics (SPH) method[J]. Tribology International, 2018, 127: 47- 58
doi: 10.1016/j.triboint.2018.05.034
[14]   LIU H, ARFAOUI G, STANIC M, et al Numerical modelling of oil distribution and churning gear power losses of gearboxes by smoothed particle hydrodynamics[J]. Journal of Engineering Tribology, 2019, 233 (1): 74- 86
[15]   皮彪, 丁上, 王叶枫, 等 基于MPS的某重型汽车主减速器润滑系统优化与分析[J]. 润滑与密封, 2018, 43 (1): 98- 103
PI Biao, DING Shang, WANG Ye-feng, et al Optimization and analysis of main reducer lubrication for heavy vehicle[J]. Lubrication Engineering, 2018, 43 (1): 98- 103
doi: 10.3969/j.issn.0254-0150.2018.01.019
[16]   李晏, 皮彪, 王叶枫, 等 基于移动粒子半隐式法的齿轮搅油损失分析与试验验证[J]. 同济大学学报: 自然科学版, 2018, 46 (3): 368- 372
LI Yan, PI Biao, WANG Ye-feng, et al Analysis and validation of churning loss of helical gear based on moving particle semi-implicit method[J]. Journal of Tongji University: Natural Science, 2018, 46 (3): 368- 372
[17]   KOSHIZUKA S A particle method for incompressible viscous flow with fluid fragmentation[J]. Progress in Computational Fluid Dynamics, 1995, 4: 29- 46
[18]   孙学尧. 基于缓解压力振荡MPS法的数值水池研究[D]. 上海: 上海交通大学, 2011: 15.
SUN Xue-yao. Research on numerical wave tank based on pressure fluctuate reducing MPS method[D]. Shanghai: Shanghai Jiao Tong University, 2011: 15.
[19]   尹金. 基于MPS法的不可压流体的研究与模拟[D]. 合肥: 安徽大学, 2011: 44.
YIN Jin. Research and simulation of incompressible fluid based on MPS method[D]. Hefei: Anhui University, 2011: 44.
[20]   TANAKA M, MASUNAGA T Stabilization and smoothing of pressure in MPS method by quasi-compressibility[J]. Journal of Computational Physics, 2010, 229 (11): 4279- 4290
doi: 10.1016/j.jcp.2010.02.011
[21]   彭钱磊, 桂良进, 范子杰 基于齿面移动法的齿轮飞溅润滑性能数值分析与验证[J]. 农业工程学报, 2015, 31 (10): 51- 56
PENG Qian-lei, GUI Liang-jin, FAN Zi-jie Gear splash lubrication numerical simulation and validation based on teeth-face-moving method[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31 (10): 51- 56
doi: 10.11975/j.issn.1002-6819.2015.10.007
[22]   YANG C, ZHANG H Numerical simulation of the interactions between fluid and structure in application of the MPS method assisted with the large eddy simulation method[J]. Ocean Engineering, 2018, 155 (1): 55- 64
[23]   SEETHARAMAN S, KAHRAMAN A, MOORHEAD M D, et al Oil churning power losses of a gear pair: experiments and model validation[J]. Journal of Tribology, 2009, 131 (2): 022202
doi: 10.1115/1.3085942
[24]   梁文宏, 刘凯, 崔亚辉 直齿轮搅油功率损失的实验研究[J]. 实验力学, 2015, 30 (2): 239- 244
LIANG Wen-hong, LIU Kai, CUI Ya-hui Experimental study of power loss in spur gear churning[J]. Journal of Experimental Mechanics, 2015, 30 (2): 239- 244
doi: 10.7520/1001-4888-14-117
[25]   CHERNORAY V, JAHANMIRI M Experimental study of multiphase flow in a model gearbox[J]. WIT Transactions on Engineering Sciences, 2011, 70: 153- 164
[1] Hao ZHOU,Kun ZHANG,Ya-wei LI,Jia-kai ZHANG. Numerical simulation of fly ash deposition in coal and corn stalk co-combustion with dynamic mesh technique[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1139-1147.
[2] Yong-xiang GAO,Du HONG,You-wei CHENG,Li-jun WANG,Xi LI. Experimental and numerical simulation on sequential three phase jet-loop reactor[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 997-1005.
[3] Yan-ning LU,Hong-tao ZHANG,Yan-wei XU,Yan-qun ZHU,Kai-di WAN,Zhe-ru SHAO,Zhi-hua WANG. Numerical simulation of effects of flue gas recirculation on biomass combustion in grate boiler[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1898-1906.
[4] Shi-tang KE,Wen-lin YU,Lu XU,Ling-yun DU,Wei YU,Qing YANG. Flow fields and aerodynamic loads of wind turbine considering yaw effect under wind and rain interaction[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1936-1945.
[5] ZHANG Xin, ZHANG Tian-hang, HUANG Zhi-yi, ZHANG Chi, KANG Cheng, WU Ke. Local loss and flow characteristic of dividing flow in bifurcated tunnel[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(3): 440-445.
[6] CHEN Wei, QIN Xian-rong, YANG Zhi-gang. Wind load characteristics analysis of mast and jib of tower crane[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(12): 2262-2270.
[7] CHEN Wen-zhuo, CHEN Yan, ZHANG Wei-ming, HE Shao-wei, LI Bo, JIANG Jun-ze. Numerical simulation for dynamic air spray painting of arc surfaces[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(12): 2406-2413.
[8] KE Shi tang, ZHU Peng. Wind loads of frequency domain characteristics for large cooling towers with aerodynamic measures based on large eddy simulation[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(11): 2143-2149.
[9] HE Fang xiang, ZHAN Shu lin, QIAN Xiao qian, LAI Jun ying. Numerical simulation on insulation of flat roof ventilation layer[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(12): 2397-2402.
[10] YANG Mao,XU Shan-shan. Numerical simulation of aerodynamics of coupled flapping-pitching airfoil with trailing-edge flap[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(1): 149-153.
[11] LUO Yao-zhi, SUN Bin. Wind tunnel test and numerical simulation of wind-induced static pressure field around a building[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(7): 1148-1156.
[12] SUN Jing-yuan, LOU Jia-ming, HUANG Zheng-liang,WANG Jing-dai, JIANG Bin-bo. Acoustic emission detection and CFD simulation of a liquid spray process[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(2): 218-225.
[13] LI Qiang, LIU Shu-lian, YU Gui-chang, PAN Xiao-hong, ZHENG Shui-ying. Lubrication and stability analysis of nonlinear rotor-bearing system[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(10): 1729-1736.
[14] ZHOU Yin, YU Ya-nan, DUAN Yuan-yu. Numerical simulation on insulation of ventilated roof of profiled steel sheet[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(1): 112-117.
[15] LI Liang-chao, WANG Jia-jun, GU Xue-ping, FENG Lian-fang, LI Bo-geng. computational fluid dynamics simulation of bubble size and
local gas holdup in stirred vessel
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(12): 2396-2400.