Please wait a minute...
J4  2012, Vol. 46 Issue (2): 218-225    DOI: 10.3785/j.issn.1008-973X.2012.02.006
    
Acoustic emission detection and CFD simulation of a liquid spray process
SUN Jing-yuan, LOU Jia-ming, HUANG Zheng-liang,
WANG Jing-dai, JIANG Bin-bo, YANG Yong-rong
1. State Key Laboratory of Chemical Engineering, Department of Chemical and Biochemical Engineering,
Zhejiang University, Hangzhou 310027, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to acquire a fast and sensitive detecting method of liquid spray performance, the acoustic emission (AE) signals originated from impact of liquid spray on the baffle were collected by the transducer located behind the baffle, and processed by multiple scanning accumulated Fast Fourier Transform. By analyzing the acoustic energy and power spectrum, a new criterion to determine the critical state in which the atomization performance became satisfied was proposed. When acoustic energy variation tended to be stable and began to rise, and the atomization dimensionless number started to grow rapidly, meanwhile the mean square deviation of acoustic energy began to ascend and become stable as the liquid flow rate increased, the liquid spray achieved the critical state of excellent atomization. After that, the improvement of atomization performance would be unconspicuous if the liquid flow rate increased further. Simultaneously, the liquid spray process was detected through image pickup and calculated by Eulerian-Lagrangian computational fluid dynamics (CFD) simulation method. The criterion was verified by the images of spray field and the simulation results, which indicated the acoustic emission detection could measure the liquid spray performance qualitatively.



Published: 20 March 2012
CLC:  TQ 021.1  
Cite this article:

SUN Jing-yuan, LOU Jia-ming, HUANG Zheng-liang,WANG Jing-dai, JIANG Bin-bo. Acoustic emission detection and CFD simulation of a liquid spray process. J4, 2012, 46(2): 218-225.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2012.02.006     OR     http://www.zjujournals.com/eng/Y2012/V46/I2/218


液体雾化效果的检测及流体力学模拟

为获得一种快速灵敏的液体雾化效果检测方法,利用置于挡板后方的声发射传感器,采集液体喷雾撞击挡板产生的声信号并进行多次扫描累加的快速傅里叶变换,得到不同流量下的声能量值和功率谱图.通过对实验结果的分析,提出临界良好雾化状态的声能量判据,即随着流量的增加,当液滴撞击挡板产生的声能量趋于平稳并开始缓慢上升,雾化准数由缓慢增加转变为迅速增大以及声能量均方差开始上升并趋于平稳时,液体喷雾处于良好雾化的临界状态,进一步增大流量,雾化效果的提升不明显.同时,对雾化效果采用摄像法测定和基于Eulerian-Lagrangian耦合算法的计算流体力学(CFD)模拟,结果与声发射实验的结果吻合很好,由此说明采用声发射方法对液体雾化效果进行定性检测具有较强的可行性与准确性.

[1]  陈斌,郭烈锦,张西民,等.喷嘴雾化特性实验研究[J].工程热物理学报,2001, 22(2): 237-240.
CHEN Bing, GUO Liejin, ZHANG Ximin, et al. Experimental investigation of spray characteristics of different nozzles [J]. Journal of Engineering Thermophysics, 2001, 22(2): 237-240.
[2] BP Chemicals Limited. Polymerization Process. US, 5541270A[P]. 1996-07-30.
[3] 曹建明.喷雾学[M].北京:机械工业出版社,2005: 121-156.
[4] 任聪静,吴雪妹,王靖岱,等. 气固流化床声发射信号的多尺度解析[J]. 浙江大学学报:工学版,2008, 42(7): 1255-1261.
REN Congjing, WU Xuemei, WANG Jingdai, et al. Multiscale resolution of acoustic emission in gassolid fluidized bed [J]. Journal of Zhejiang University: Engineering Science, 2008, 42(7): 1255-1261.
[5] CHEN X M, CHEN D Z. Measuring average particle size for fluidized bed reactors by employing acoustic emission signals and neural networks [J]. Chemical Engineering & Technology, 2008, 31(1): 95-102.
[6] HALSTENSEN M, BAKKER P D, ESBENSEN K H. Acoustic chemometric monitoring of an industrial granulation production process—a PAT feasibility study [J]. Chemometrics and Intelligent Laboratory Systems, 2006, 84(1/2): 88-97.
[7] MATERO S, POUTIAINEN S, LESKINEN J, et al. The feasibility of using acoustic emissions for monitoring of fluidized bed granulation [J]. Chemometrics and Intelligent Laboratory Systems, 2009, 97(1): 75-81.
[8] HALSTENSEN M, ESBENSEN K H. New developments in acoustic chemometric prediction of particle size distribution—the problem is the solution [J]. Journal of Chemometrics, 2000, 14(5/6): 463-481.
[9] TAO Y J, HUAI X L, GUO Z Y, et al. Numerical simulation of spray performance based on the EulerLagrange approach [J]. Journal of Thermal Science, 2009, 18(1): 91-96.
[10] AMSDEN A A, O’ROURKE P J. The tab method for numerical calculation of spray droplets breakup [J]. Society of Automotive Engineers Technical Paper,  1987, 872089.
[11] LIU A B, MATHER D, REITZ R D. Modeling the effects of drop drag and breakup on fuel sprays [J]. Society of Automotive Engineers Technical Paper, 1993, 930072.
[12] 初纶孔. 柴油机供油与雾化[M]. 大连:大连理工出版社,1989: 79-80.
[13] 高继慧,陈国庆,高建民,等. 半干法压力旋流式喷嘴雾化性能数值模拟[J]. 哈尔滨工业大学学报,2010, 42(3): 437-441.
GAO Jihui, CHEN Guoqing, GAO Jianmin, et al. Numerical simulation on atomizing performance of pressure swirl nozzle for semidrying FGD [J]. Journal of Harbin Institute of Technology, 2010, 42(3): 437-441.
[14] 邓巍,何雄奎,丁为民,等. 基于压力变量喷雾的雾化特性及其比较[J]. 江苏大学学报:自然科学版,2009, 30(6): 545-548.
DENG Wei, HE Xiongkui, DING Weimin, et al. Characteristics and comparison of pressurebased variable spray[J]. Journal of Jiangsu University: Natural Science Edition, 2009, 30(6): 545-548.
[15] 黄正梁,王靖岱,阳永荣. 声波的多尺度分解与搅拌釜中浆液浓度的测量[J]. 化工学报,2006, 57(9): 2063-2067.
HUANG Zhengliang, WANG Jingdai, YANG Yongrong. Measurement of slurry concentration in stirred vessel based on AE measurement by wavelet transform [J]. Journal of Chemical Industry and Engineering, 2006, 57(9): 2063-2067.
[16] JIANG X J, WANG J D, JIANG B B, et al. Study of the power spectrum of acoustic emission(AE) by accelerometers in fluidized beds [J]. Industrial & Engineering Chemistry Research, 2007, 46(21): 6904-6909.
[17] ISHIMOTO J, HOSHINA H, TSUCHIYAMA T, et al. Integrated simulation of the atomization process of a liquid jet through a cylindrical nozzle [J]. Interdisciplinary Information Sciences, 2007, 13(1): 7-16.

[1] LIN Cong-Jing, WANG Jing-Dai, YANG Yong-Rong. Flow pattern and its transition of different particles in gas-solid fluidized bed[J]. J4, 2010, 44(2): 305-309.
[2] LIN Cong-Jing, WANG Jing-Dai, YANG Yong-Rong. Minimum fluidization velocity of bimodal polyethylene particles[J]. J4, 2009, 43(09): 1687-1691.