Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (9): 1725-1733    DOI: 10.3785/j.issn.1008-973X.2021.09.014
    
Seismic performance of replaceable eccentrically braced steel frame
Tong LI1(),Xin-wu WANG2,*(),Qiang SHI2,3,xin BU2,Hai-su SUN2
1. School of Civil Engineering, Henan University of Science and Technology, Luoyang 471023, China
2. Henan International Joint Laboratory of New Civil Engineering Structure, Luoyang Institute of Science and Technology, Luoyang 471023, China
3. School of Science, Wuhan University of Technology, Wuhan 430070, China
Download: HTML     PDF(1616KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to study the yield type of the link, the axial force of the column and the post-earthquake replacement link on seismic performance of replacement eccentrically braced steel frame, the pseudo-static cyclic loading tests of four replaceable eccentrically braced steel frames were carried out. The hysteretic curves, the stiffness degradation, the ductility coefficient and the strain of specimens were investigated to evaluate the seismic performance. Results show that the yield type of the link is one of the important factors affecting the seismic performance of the replaceable eccentrically braced steel frame, the bearing capacity, the ductility and the energy dissipation capacity of the specimens with shear type is higher than that of bending type. The initial stiffness and the ductility coefficient of the structure decrease with the increase of the axial force of the column. Compared with the original model, only the energy dissipation capacity of the model of replacing the link after the earthquake is decreased, while the other performance did not change much which indicates that the structure has good replaceability. Through the corresponding strain analysis, it is found that until the end of the test, most areas are still in the elastic status except the link, which indicates that the link as the first seismic defense line can protect other members.



Key wordseccentrically braced steel frame      replaceable      high strength bolt      pseudo-static test      seismic performance     
Received: 28 June 2020      Published: 20 October 2021
CLC:  TU 391  
Fund:  国家自然科学基金资助项目(51678284);中原科技创新领军人才项目(214200510002);河南省高校科技创新团队项目(21IRTSTHN010);河南省科技厅科技攻关项目(212102310969);河南省高等学校重点科研项目(21B560010);河南省高校青年骨干教师培养计划(2020GGJS244)
Corresponding Authors: Xin-wu WANG     E-mail: ligen2209@163.com;lywxw518@163.com
Cite this article:

Tong LI,Xin-wu WANG,Qiang SHI,xin BU,Hai-su SUN. Seismic performance of replaceable eccentrically braced steel frame. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1725-1733.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.09.014     OR     https://www.zjujournals.com/eng/Y2021/V55/I9/1725


可替换式偏心支撑钢框架抗震性能

为了研究耗能梁段屈服类型、柱轴压和震后替换耗能梁段对可替换式偏心支撑钢框架抗震性能的影响,采用拟静力循环加载的方法对4个可替换式偏心支撑钢框架进行试验,并从滞回曲线、刚度退化、延性系数和构件应变等方面分析其抗震性能. 结果表明,耗能梁段屈服类型对可替换式偏心支撑钢框架抗震性能影响较大,随着耗能梁段从剪切型过渡到弯曲型,结构的承载能力、延性和耗能能力均呈下降趋势;随着柱轴压的增加,试件的初始刚度和延性系数逐渐降低;震后替换耗能梁段的模型与原模型相比,仅耗能能力有所下降,其余性能变化不大,说明这种结构具有良好的可替换性. 通过对应变分析发现,直至试验结束,耗能梁以外绝大部分区域仍处于弹性阶段,说明耗能梁段作为第一道抗震防线可以保护其他构件.


关键词: 偏心支撑钢框架,  可替换,  高强螺栓,  拟静力试验,  抗震性能 
构件 截面尺寸/mm 材料
H250×125×6×9 Q345B
H200×200×8×12 Q345B
支撑 H125×125×6.5×9 Q345B
耗能梁 H250×125×6×9 Q235B
Tab.1 Section size and material of component
Fig.1 Dimension drawing of specimen
Fig.2 Detail of link
钢材 t/mm E/GPa Fy/MPa ${\varepsilon }_{{\rm{y}}}$/% Fu/Mpa $\;\rho$/%
Q235 6.0 236 271 0.163 447 35
Q235 9.0 241 261 0.167 427 30
Q345 6.0 201 269 0.181 536 32
Q345 6.5 220 334 0.165 461 28
Q345 8.0 224 379 0.213 543 30
Q345 9.0 227 356 0.182 530 29
Q345 12.0 224 337 0.179 526 34
Tab.2 Material properties of specimens
Fig.3 Test site layout
Fig.4 Instrumentation arrangement of specimen
Fig.5 Horizontal cyclic loading system
编号 l/mm N/kN 替换 $e$ h/mm tw/mm tf/mm Z/cm3 Fy/MPa Vp /kN Mp/(kN·m)
REBF-1 400 200 1.08 250 6 9 309 271 226.3 83.7
REBF-2 600 200 1.62 250 6 9 309 271 226.3 83.7
REBF-3 400 400 1.08 250 6 9 309 271 226.3 83.7
REBF-4 400 400 1.08 250 6 9 309 271 226.3 83.7
Tab.3 Parameters of test specimens
模型 失效模式 破坏形式
REBF-1 耗能梁腹板撕裂,翼缘弯曲. 剪切屈服
REBF-2 耗能梁翼缘焊缝断裂. 弯曲屈服
REBF-3 耗能梁与端板焊缝热影响区
钢材断裂,翼缘弯曲.
剪切屈服
REBF-4 耗能梁与端板焊缝热影响区
钢材断裂,翼缘弯曲.
剪切屈服
Tab.4 Model failure mode
编号 屈服点 极限点 破坏点
y/mm Py /kN m/mm Pm/kN u/mm Pu/kN
REBF-1 3.86 262.3 30.66 710 35.01 695.65
REBF-2 2.85 202.11 27.72 488.01 27.72 488.01
REBF-3 3.33 230.62 30.68 690.75 33.39 659.75
REBF-4 2.67 142.86 30.51 677.7 30.51 677.7
Tab.5 Test specimens seismic performance experimental results
Fig.6 Hysteretic curve of test specimens
Fig.7 Skeleton curve of test specimens
Fig.8 Angle mechanism of K-type link
试件 ${\gamma }_{{\rm{y}}}$/rad ${\gamma }_{{\rm{u}}}$/rad ${V}_{ {\rm{y} } }$/kN ${V}_{{\rm{u}}}$/kN
REBF-1 0.014 5 0.147 163.0 409.5
REBF-2 0.010 3 0.080 159.4 385.4
REBF-3 0.013 6 0.137 138.0 401.3
REBF-4 0.009 2 0.124 86.8 386.4
Tab.6 Test results of test specimens link's angle and shear
Fig.9 Stiffness degradation curve of test specimens
Fig.10 Equivalent elastic stiffness method
编号 $\varDelta _{ {\rm{y} } }$/mm $\varDelta _{ {\rm{u} } }$/mm $\; \mu$
REBF-1 9.40 35.30 3.76
REBF-2 9.02 28.88 3.20
REBF-3 11.72 32.93 2.81
REBF-4 10.93 29.76 2.72
Tab.7 Ductility coefficient of test specimens
编号 J E C
REBF-1 31.39 1.33 0.21
REBF-2 17.79 1.15 0.18
REBF-3 27.98 1.28 0.20
REBF-4 20.31 1.02 0.16
Tab.8 Energy consumption capacity of test specimens
Fig.11 Strain curve of main measuring points for REBF-3
Fig.12 Photo of bolt with strain gauge
Fig.13 Bolt position and number
Fig.14 Strain curve of test specimens' bolts
Fig.15 Oval of bolt hole
[1]   KAZEMZADEH AZAD S, TOPKAYA C A review of research on steel eccentrically braced frames[J]. Journal of Constructional Steel Research, 2017, 128: 53- 73
doi: 10.1016/j.jcsr.2016.07.032
[2]   张磊, 罗桂发, 童根树 人字撑−钢框架弹塑性抗侧性能的精细化研究[J]. 浙江大学学报: 工学版, 2013, 47 (10): 1815- 1823
ZHANG Lei, LUO Gui-fa, TONG Gen-shu Refined study on lateral-force resistance of dual structural system composed of moment-resisting frame and chevron braces[J]. Journal of Zhejiang University: Engineering Science, 2013, 47 (10): 1815- 1823
[3]   LEILA H N, MOHSEN T Equation for achieving efficient length of link-beams in eccentrically braced frames and its reliability validation[J]. Journal of Constructional Steel Research, 2017, 130: 53- 64
doi: 10.1016/j.jcsr.2016.11.020
[4]   POPOV E P, ENGELHARDT M D Seismic eccentrically braced frames[J]. Journal of Constructional Steel Research, 1998, (10): 321- 354
[5]   POPOV E P Recent research on eccentrically braced frames[J]. Engineering Structures, 1983, 5 (1): 3- 9
doi: 10.1016/0141-0296(83)90034-2
[6]   MALLEY J O, POPOV E P Shear links in eccentrically braced frames[J]. Engineering Structures, 1984, 110 (9): 111- 123
[7]   KASAI K, POPOV E P General behavior of WF steel smear link beams[J]. Engineering Structures, 1986, 112 (2): 362- 382
doi: 10.1061/(ASCE)0733-9445(1986)112:2(362)
[8]   KASAI K, POPOV E P Cyclic web buckling control for shear link beams[J]. Engineering Structures, 1986, 112 (3): 505- 523
doi: 10.1061/(ASCE)0733-9445(1986)112:3(505)
[9]   时强, 王新武, 晏石林, 等 平齐端板连接偏心支撑钢框架抗震试验研究[J]. 华中科技大学学报: 自然科学版, 2020, 48 (6): 107- 112
SHI Qiang, WANG Xin-wu, YAN Shi-lin, et al Experimental study on seismic behavior of eccentrically braced steel frame with flush end plant connection[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2020, 48 (6): 107- 112
[10]   LIAN M, SU M Z, et al Seismic performance of high-strength steel fabricated eccentrically braced frame with vertical shear link[J]. Journal of Constructional Steel Research, 2017, 137 (6): 262- 285
[11]   LIAN M, SU M Z, ZHANG H, et al Finite element analysis for the seismic performance of steel frame-tube structures with replaceable shear links[J]. Steel and Composite Structures, 2019, 30 (4): 365- 382
[12]   LIAN M, SU M Z Seismic testing and numerical analysis of Y-shaped eccentrically braced frame made of high-strength steel[J]. Structural Design of Tall and Special Buildings, 2018, (5): e1455
[13]   LIAN M, SU M Z Experimental study and simplified analysis of EBF fabricated with high strength steel[J]. Journal of Constructional Steel Research, 2017, 139: 6- 17
doi: 10.1016/j.jcsr.2017.09.013
[14]   李慎, 苏明周, 连鸣, 等 多层高强钢组合K形偏心支撑钢框架抗震性能研究[J]. 土木工程学报, 2015, 48 (10): 38- 47
LI Shen, SU Ming-zhou, LIAN Ming, et al Seismic behavior of multi-storey high strength steel composite K-eccentrically braced steel frame[J]. China Civil Engineering Journal, 2015, 48 (10): 38- 47
[15]   殷占忠, 李锦铭, 董龙光, 等 偏心支撑钢框架可替换剪切连接件试验研究[J]. 建筑结构学报, 2019, 40 (9): 157- 165
YIN Zhan-zhong, LI Jing-ming, DONG Long-guang, et al Experimental study of replaceable shear links for eccentrically braced steel frames[J]. Journal of Building Structures, 2019, 40 (9): 157- 165
[16]   中华人民共和国原冶金工业部. 钢及钢产品力学性能试验取样位置及试样制备: GB/T 2975—2018[S]. 北京: 中国标准出版社, 2018.
[17]   中国钢铁工业协会. 金属材料拉伸试验第1部分: 室温试验方法: GB/T 228.1—2010[S]. 北京: 中国标准出版社, 2010.
[18]   中华人民共和国住房和城乡建设部. 建筑抗震试验规程: JCJ/T 101—2015[S]北京: 中国建筑工业出版社, 2015.
[1] Wei WANG,Hong-lai SONG,Chao-chao QUAN,yu LI,Guo-kai ZHEN,Hao-tian ZHAO. Seismic damage repair and lateral stiffness analysis of horizontal corrugated steel plate concrete composite shear wall[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1694-1704.
[2] Shuai-ke FENG,Zheng-xing GUO,Lu-yao NI,Guo-jian LI,Chang-yi GONG,Chao XIE,Jian-zheng MAN. Experimental study on seismic performance of joints connecting concrete-filled steel tube columns and hybrid beams[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1464-1472.
[3] Xi-ran ZHANG,Shao-kuan CHEN,Bo WANG,Shuang LIU,Zhuo WANG. Emergency allocation optimization model considering reliability of replaceable rescue[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 20-30.
[4] Shui-guang TONG,Jia-zhi MIAO,Zhe-ming TONG,Shun HE,Shu-feng XIANG,Xiang-hui SHUAI. Finite element analysis and optimization for static and dynamic characteristics of diesel forklift frame[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1637-1646.
[5] CHEN Ran, LIAN Guang-yao, QIN Zi-long, LI Bao-chen, ZHANG Xi-shan. Fault injection approach for line replaceable module based on hierarchical model[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(7): 1390-1396.
[6] YIN Shi-ping, LI Yao,YANG Yang, YE Tao. Influencing factors of seismic performance of RC columns strengthened with textile reinforced concrete[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(5): 904-913.
[7] HAN Dong, BU Xin, WANG Xin wu, JIANG Cang ru. Experiment on seismic performance of spatial beam to corner column connection with T-stub[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(2): 287-296.
[8] LI Ying-min, YANG Long, LIU Shuo-yu, LUO Wen-wen. Method of failure mode evaluation of structure based on seismic resilience index[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(11): 2197-2206.
[9] YU Zhi-wu, PENG Xiao-dan,GUO Wei, PENG Miao-pei. Seismic performance of precast concrete shear wall with U-type reinforcements ferrule connection[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(5): 975-984.