Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (9): 1694-1704    DOI: 10.3785/j.issn.1008-973X.2021.09.011
    
Seismic damage repair and lateral stiffness analysis of horizontal corrugated steel plate concrete composite shear wall
Wei WANG(),Hong-lai SONG,Chao-chao QUAN,yu LI,Guo-kai ZHEN,Hao-tian ZHAO
School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
Download: HTML     PDF(1583KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A shear horizontal corrugated steel plate concrete composite shear wall (CSPCW) was designed, in order to study the feasibility of rapid recovery of damaged corrugated steel plate concrete composite shear wall. First, a certain initial damage was applied to the CSPCW, then the damaged part of the wall toe was repaired and reformed to become a renewable corrugated steel plate composite shear wall (RCSPCW), and quasi-static loading was carried out. In order to verify the replaceable of the damper, the specimen was subjected to quasi-static loading again after replacing the damper when the interlayer displacement angle of RCSPCW reached 1.25%. Test results show that RCSPCW can concentrate the damage on the damper and improve the ductility and energy dissipation capacity of the shear wall. Moreover, the hysteretic curve of the specimen after the second damper replacement was fuller than that of the first damper replacement, which proves the feasibility of replacing the damper under rare earthquakes. ABAQUS was used to carry out numerical expansion analysis on the lateral stiffness of RCSPCW. It is found that the shear span ratio has the greatest influence and the volume steel content has the smallest influence.



Key wordscorrugated steel plate      composite shear wall      earthquake damage repair      replaceable damper      lateral stiffness      numerical analysis     
Received: 08 October 2020      Published: 20 October 2021
CLC:  TU 398.2  
Fund:  国家自然科学基金资助项目(51578449,51878548);陕西省自然科学基础研究计划资助项目(2018JZ5013)
Cite this article:

Wei WANG,Hong-lai SONG,Chao-chao QUAN,yu LI,Guo-kai ZHEN,Hao-tian ZHAO. Seismic damage repair and lateral stiffness analysis of horizontal corrugated steel plate concrete composite shear wall. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1694-1704.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.09.011     OR     https://www.zjujournals.com/eng/Y2021/V55/I9/1694


横波钢板混凝土剪力墙震损修复及抗侧刚度分析

为了研究震损横波钢板剪力墙构件快速恢复功能的可行性,设计横波钢板混凝土组合剪力墙(CSPCW). 施加一定的初始损伤后,对墙趾受损部位进行修复改造使CSPCW成为带阻尼器钢板混凝土组合剪力墙(RCSPCW),并进行拟静力加载. 为了验证阻尼器的可更换性,在RCSPCW层间位移角达1.25%时,更换阻尼器后再次对试件进行拟静力加载. 试验结果表明:RCSPCW能够将损伤集中在阻尼器上,提升剪力墙延性及耗能能力. 第二次更换阻尼器试件的滞回曲线比第一次更换阻尼器的更饱满,证明罕遇地震下更换阻尼器的可行性. 采用ABAQUS对RCSPCW进行抗侧刚度数值拓展分析,发现剪跨比影响最大,体积含钢率影响最小.


关键词: 波形钢板,  组合剪力墙,  震损修复,  可更换阻尼器,  抗侧刚度,  数值分析 
材料 Es/105 MPa Fy /MPa Fu /MPa
8钢筋 2.06 313 450
16钢筋 2.00 420 550
Q235钢板 2.09 315 470
Tab.1 Mechanical properties of specimen steel
Fig.1 Specific dimensions and construction of shear wall
Fig.2 Specific dimensions and construction of replaceable damper
Fig.3 Damper working mechanism
Fig.4 Specimen loading device
Fig.5 Specimen loading system
Fig.6 Connection diagram of replaceable damper and specimen
Fig.7 Specimen damage form in three test phases
Fig.8 Hysteresis curves of specimen
Fig.9 Skeleton curve comparison of specimen
Fig.10 Stiffness degradation comparison of specimen
试件 Fcr/mm $\varDelta $cr/mm Fy/kN $\varDelta $y/mm FP/kN $\varDelta $p/mm Fu/kN $\varDelta $u/mm μ
CSPCW-H0 +250 +8.102 +5410.420 +10.24 +6010.85 +10.61 / / /
CSPCW-H0 ?250 ?5.410 ?544.160 ?18.68 ?647.52 ?16.50 / / /
RCSPCW-H1 +150 +8.105 +821.160 +14.00 / / / / /
RCSPCW-H1 ?150 ?5.180 ?812.200 ?14.54 / / / / /
RCSPCW-H2 / / +826.101 +18.50 +488.50 +86.17 +8100.62 +48.88 8.21
RCSPCW-H2 / / ?806.108 ?18.84 ?481.16 ?80.58 ?866.41 ?810.65 2.87
Tab.2 Load and displacement of characteristic points
Fig.11 Accumulation energy consumption comparison of specimen
Fig.12 Specimen model buckling mode
Fig.13 Hysteresis curve comparison of RCSPCW-H2 test and simulation
$F'_{\rm{p}} $/kN Fp/kN e/%
+431.78 +433.5 0.40
?431.78 ?431.16 0.14
Tab.3 Comparison of test and simulation results for RCSPCW-H2 peak load
Fig.14 Simplified mechanical model of corrugated steel plate of corner dampers
ρ/% k'/% k/%
n=0.1,λ=1.5 n=0.1,λ=2.0 n=0.1,λ=2.5 n=0.2,λ=1.5 n=0.2,λ=2.0 n=0.2,λ=2.5 n=0.3,λ=1.5 n=0.3,λ=2.0 n=0.3,λ=2.5
2.28 6.63 11.59 12.79 14.09 15.22 17.39 20.01 17.45 19.15 21.00
2.28 9.89 12.81 14.11 15.52 16.52 19.20 21.98 19.23 21.08 23.09
2.28 13.20 14.14 15.55 17.09 17.31 20.97 23.77 21.17 23.19 25.39
3.05 6.63 12.37 13.63 15.00 16.30 19.94 23.82 18.57 20.37 22.32
3.05 9.89 13.65 15.03 16.52 17.79 22.11 26.29 20.46 22.42 24.54
3.05 13.20 15.06 16.56 18.18 18.73 24.14 28.33 22.52 24.66 26.98
3.81 6.63 13.38 14.73 16.20 17.29 22.91 29.06 20.27 22.21 24.32
3.81 9.89 14.77 16.24 17.83 18.72 25.31 31.56 22.31 24.43 26.73
3.81 13.20 16.28 17.89 19.62 19.68 27.07 33.87 24.56 26.87 29.37
Tab.4 Effective lateral stiffness ratio of shear wall under different parameters
Fig.15 Parameter correlation analysis of repaired shear wall
[1]   RAHIMIAN A Lateral stiffness of concrete shear walls for tall buildings[J]. ACI Structural Journal, 2011, 108 (6): 755- 765
[2]   NEUENHOFER A Lateral stiffness of shear walls with openings[J]. Journal of Structural Engineering, 2006, 132 (11): 1846- 1851
doi: 10.1061/(ASCE)0733-9445(2006)132:11(1846)
[3]   WELT T S, MASSONE L M, LAFAVE J M, et al Confinement behavior of rectangular reinforced concrete prisms simulating wall boundary elements[J]. Journal of Structural Engineering, 2017, 143 (4): 04016204
doi: 10.1061/(ASCE)ST.1943-541X.0001682
[4]   王威, 张龙旭, 苏三庆, 等 波形钢板−混凝土组合剪力墙抗震性能试验研究[J]. 建筑结构学报, 2018, 39 (10): 75- 84
WANG Wei, ZHANG Long-xu, SU San-qing, et al Experimental research on seismic behavior of corrugated sheet plate-concrete composite shear walls[J]. Journal of Building Structures, 2018, 39 (10): 75- 84
[5]   JÜNEMANN R, DE LA LLERA J C, HUBE M A, et al A statistical analysis of reinforced concrete wall buildings damaged during the 2010, Chile earthquake[J]. Engineering Structures, 2015, 82: 168- 185
doi: 10.1016/j.engstruct.2014.10.014
[6]   WALLACE J W, MASSONE L M, BONELLI P, et al Damage and implications for seismic design of RC structural wall buildings[J]. Earthquake Spectra, 2012, 28: 281- 299
doi: 10.1193/1.4000047
[7]   TELLEEN K, MAFFEI J, HEINTZ J. Practical lessons for concrete wall design, based on studies of the 2010 Chile earthquake [C]// 15th World Conference on Earthquake Engineering. Lisbon: [s.n.], 2012: 24-28.
[8]   徐培福, 黄吉锋, 陈富盛 近50年剪力墙结构震害及其对抗震设计的启示[J]. 建筑结构学报, 2017, 38 (3): 1- 13
XU Pei-fu, HUANG Ji-feng, CHEN Fu-sheng Earthquake damages to shear wall structure in last fifty years and seismic design enlightenment[J]. Journal of Building Structures, 2017, 38 (3): 1- 13
[9]   DE MATTEIS G, FORMISANO A, MAZZOLANI F M An innovative methodology for seismic retrofitting of existing RC buildings by metal shear panels[J]. Earthquake engineering and structural dynamics, 2009, 38 (1): 61- 78
doi: 10.1002/eqe.841
[10]   吕西林, 陈云, 毛苑君 结构抗震设计的新概念——可恢复功能结构[J]. 同济大学学报: 自然科学版, 2011, 39 (7): 941- 948
LV Xi-lin, CHEN Yun, MAO Yuan-jun New concept of structural seismic design: earthquake resilient structures[J]. Journal of Tongji University: Natural Science, 2011, 39 (7): 941- 948
[11]   ANTONIADES K K, SALONIKIOS T N, KAPPOS A J Cyclic tests on seismically damaged reinforced concrete walls strengthened using fiber-reinforced polymer reinforcement[J]. ACI Structural Journal, 2003, 100 (4): 510- 518
[12]   LI B, LIM C L Tests on seismically damaged reinforced concrete structural walls repaired using fiber-reinforced polymers[J]. Journal of Composites for Construction, 2010, 14 (5): 597- 608
doi: 10.1061/(ASCE)CC.1943-5614.0000110
[13]   陈再现, 孙凯林, 栾文芬, 等 低强度砖砌体粘钢-聚合物砂浆加固抗震性能试验[J]. 建筑结构学报, 2018, 39 (12): 153- 158
CHEN Zai-xian, SUN Kai-lin, PEI Wen-fen, et al Experimental study on strengthening method of low strength brick masonry using steel plate and polymer mortar[J]. Journal of Building Structures, 2018, 39 (12): 153- 158
[14]   PRETI M, MEDA A RC structural wall with unbonded tendons strengthened with high-performance fiber-reinforced concrete[J]. Materials and Structures, 2015, 48 (1-2): 249- 260
doi: 10.1617/s11527-013-0180-8
[15]   张远淼, 余江滔, 陆洲导, 等 ECC修复震损剪力墙抗震性能试验研究[J]. 工程力学, 2015, 32 (1): 72- 80
ZHANG Yuan-miao, YU Jiang-tao, LU Zhou-dao, et al Experimental test on aseismic behavior of damaged reinforced concrete shear wall repaired with ECC[J]. Engineering Mechanics, 2015, 32 (1): 72- 80
[16]   WANG W, WANG Y, LU Z Experimental study on seismic behavior of steel plate reinforced concrete composite shear wall[J]. Engineering Structures, 2018, 160: 281- 292
[17]   WANG W, SONG J, HOU M, et al Experimental study and numerical simulation of replaceable corrugated steel plate-concrete composite shear walls[J]. Soil Dynamics and Earthquake Engineering, 2019, 127: 105827
doi: 10.1016/j.soildyn.2019.105827
[18]   PAULAY T, PRIESTLEY M J N. Seismic design of reinforced concrete and masonry buildings [M]. [S.l.]: Wiley, 1992: 362-495
[19]   中华人民共和国住房和城乡建设部.建筑抗震试验规程: JGJ/T 101—2015 [S]. 北京: 中国建筑工业出版社, 2015: 10-19
[20]   中华人民共和国住房和城乡建设部. 钢板剪力墙技术规程: JGJ/T 380—2015[S]. 北京: 中国建筑工业出版社, 2015: 16
[21]   APPLIED TECHNOLOGY COUNCIL. ATC-58-2 preliminary evaluation of methods for defining performance [S]. Redwood City: Applied Technology Council, 2003: 39.
[22]   邱法维 结构抗震实验方法进展[J]. 土木工程学报, 2004, 37 (10): 19- 27
QIU Fa-wei Developments of seismic testing methods for structures[J]. China Civil Engineering Journal, 2004, 37 (10): 19- 27
doi: 10.3321/j.issn:1000-131X.2004.10.003
[23]   熊进刚, 丁利, 田钦 混凝土损伤塑性模型参数计算方法及试验验证[J]. 南昌大学学报: 工科版, 2019, 41 (1): 21- 26
XIONG Jin-gang, DING Li, TIAN Qin Parameter calculation method and experimental verification for concrete damage plastic model[J]. Journal of Nanchang University: Engineering and Technology, 2019, 41 (1): 21- 26
[24]   方自虎, 甄翌, 李向鹏 钢筋混凝土结构的钢筋滞回模型[J]. 武汉大学学报: 工学版, 2018, 51 (7): 613- 619
FANG Zi-hu, ZHEN Yi, LI Xiang-peng Steel hysteretic model of reinforced concrete structures[J]. Engineering Journal of Wuhan University, 2018, 51 (7): 613- 619
[25]   HUANG L, HIKOSAKA H, KOMINE K Simulation of accordion effect in corrugated steel web with concrete flanges[J]. Computers and Structures, 2004, 82 (23): 2061- 2069
[1] Wei WANG,Hao-tian ZHAO,Chao-chao QUAN,Hong-lai SONG,Yu LI,Yi-xiang ZHOU. Shear bearing capacity of vertical corrugated steel plate shear wall with replaceable toe[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1407-1418.
[2] Hai-yan DONG,You-peng ZHANG,Shao-yuan LI,Hai-long DONG. Wind tunnel simulation on contamination distribution of cantilever composite insulator with booster sheds[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1563-1571.
[3] Zhan-hao HU,Jun-tao FENG,De-ren SHENG,Jian-hong CHEN,Wei LI. Numerical simulation for vibration of interferometric probein wet steam flow field[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1157-1163.
[4] ZHANG Li-dong, WEI Qing-wen, WANG Qing. Influence of flights' shape on motion and mixing of binary particles in rotary retort[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(8): 1542-1550.
[5] NING Zhi yuan, SHEN Xin jun, LI Shu ran, YAN Ke ping. Numerical analysis of turbulence field and particle trajectory inside wet Electrostatic Precipitator[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(2): 384-392.
[6] CHEN Ren peng, MENG Fan yan, LI Zhong chao, YE Yue hong, HU Qi. Considerable displacement and protective measures for metro tunnels adjacent deep excavation[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(5): 856-863.
[7] ZHOU Jia jin, WANG Kui hua, GONG Xiao nan, ZHANG Ri hong,YAN Tian long. Numerical simulation on behavior of static drill rooted pile under tension[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(11): 2135-2141.
[8] LU Jin-yu, TANG Yi, SHU Gan-ping, WANG Heng-hua. Hysteretic behavior of steel plate shear wall with slits of unequal length[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(11): 1968-1975.
[9] WU You-xia, WANG Zhan, ZHONG Run-hui2, LI Ling-ling, FENG Zhi-hong, WANG Qi. Analysis of interaction between dust break wall piles and soil
subjected to coal loading in soft foundation
[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(3): 502-507.
[10] AI Qing-lin, HUANG Wei-feng, ZU Shun-jiang. Numeric analysis of mechanics of steel band parallel robot
based on screw theory
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(9): 1650-1656.
[11] SHU E-Na, ZHANG Wei, SHEN Yong-Gang. Control measures for preventing crack on the surface
of mass concrete abutment in early stage
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(8): 1621-1628.
[12] XIANG Yi-Jiang, SUN Jun. Dynamic response of bridge approach treated with deep-seated concrete slab[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(10): 1863-1869.