Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (3): 539-547    DOI: 10.3785/j.issn.1008-973X.2021.03.014
    
Spatiotemporal deterioration of concrete under high osmotic pressure and sulfate attack
Rui-xin LI1(),Yi-quan ZOU1,*(),Da-wei HU2,Hui ZHOU2,Chong WANG2,Yong-xiang ZHOU3,Zu-qi WANG3
1. School of civil architecture and environment, Hubei University of Technology, Wuhan 430068, China
2. Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
3. China Academy of Building Sciences Limited Company, Beijing, China 100013
Download: HTML     PDF(1998KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

10% Na2SO4 with mass fraction solution was used to carry out indoor corrosion tests under different osmotic pressures and different lengths of concrete samples, in order to simulate the corrosion damage and degradation of concrete under seawater environment. Combined with micro indentation test, CT scanning test and SEM test, the corrosion damage and micromechanical properties of concrete under the action of high osmotic pressure sulfate coupling corrosion were studied. Experimental results show that osmotic pressure accelerates ion migration and mainly promotes chemical erosion. The higher the osmotic pressure, the faster the chemical damage rate of concrete, the deeper the erosion depth; the cementation of aggregate and mortar is the weak point which is easy to be eroded and destroyed; the hydration products are easy to form in the internal pores of concrete, and more short column gypsum crystals and more fine needle ettringite crystals are formed under higher osmotic pressure.



Key wordshigh osmotic pressure      sulfate attack      concrete      micro indentation      micromechanics     
Received: 21 February 2020      Published: 25 April 2021
CLC:  TV 331  
Fund:  国家重点研发计划资助项目(2018YFC0809600,2018YFC0809601);国家自然科学基金资助项目(51779252);湖北省技术创新专项资助项目(2017AAA128);湖北省自然科学基金资助项目(2018CFA013)
Corresponding Authors: Yi-quan ZOU     E-mail: 917932422@qq.com;zouyq@mail.hbut.edu.cn
Cite this article:

Rui-xin LI,Yi-quan ZOU,Da-wei HU,Hui ZHOU,Chong WANG,Yong-xiang ZHOU,Zu-qi WANG. Spatiotemporal deterioration of concrete under high osmotic pressure and sulfate attack. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 539-547.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.03.014     OR     http://www.zjujournals.com/eng/Y2021/V55/I3/539


高渗透压-硫酸盐侵蚀下混凝土时空劣化

为了模拟研究混凝土海水环境下的侵蚀损伤及劣化规律,采用质量分数10% Na2SO4溶液对混凝土试样进行不同渗透压和不同时长下的室内侵蚀试验. 结合微米压痕试验、CT扫描试验和电子显微镜扫描试验,对高渗透压-硫酸盐耦合侵蚀作用下混凝土的侵蚀损伤及微观力学性能进行研究. 试验结果显示,渗透压加速了离子迁移,主要起到了促进化学侵蚀作用. 渗透压越大,混凝土化学损伤速率越快,侵蚀深度越深;骨料与砂浆胶结处是易侵蚀、易破坏的薄弱点;混凝土内部孔隙易生成水化产物,高渗透压下容易生成大量短柱状石膏晶体及细密的针状钙矾石晶体.


关键词: 高渗透压,  硫酸盐侵蚀,  混凝土,  微米压痕,  微观力学 
参数 符号 数值 单位 ω/%
强度等级 C50 ? ? ?
凝胶材料 BM 420 kg/m3 ?
水胶比 r 0.35 ? ?
水泥 CT 189 kg/m3 45
粉煤灰 FA 105 kg/m3 25
矿渣粉 SP 126 kg/m3 30
S 775 kg/m3 43
减水剂 WR 4.2 kg/m3 1
密度 ρ 2395 kg/m3 ?
Tab.1 Concrete parameters of sample
t/d n0/块 n1/块 n2/块
0 1 0 0
5 2 2 2
10 2 2 2
60 2 2 2
180 2 2 2
Tab.2 Erosion test sample quantity
Fig.1 Photo of high osmotic pressure and sulfate erosion experiment
Fig.2 Schematic diagram of digital concrete impermeability instrument
Fig.3 Automatic grinding and polishing machine and polishing fluid
Fig.4 3D non-contact surface topography instrument of NANOVEA
Fig.5 Micro indentation instrument
Fig.6 Specimen size of micro indentation test
Fig.7 Typical indentation cross section
Fig.8 Typical loading and unloading curve of micro indentation test
Fig.9 Distribution of elastic modulus of concrete without erosion
Fig.10 Distribution of elastic modulus of concrete under 0.7-5 d
Fig.11 Distribution of elastic modulus of concrete under 0.7-10 d
Fig.12 Distribution of elastic modulus of concrete under 0.7-60 d
Fig.13 Distribution of elastic modulus of concrete under 0.7-180 d
Fig.14 Distribution of elastic modulus of concrete under 1.4-5 d
Fig.15 Distribution of elastic modulus of concrete under 1.4-10 d
Fig.16 Distribution of elastic modulus of concrete under 1.4-60 d
Fig.17 Distribution of elastic modulus of concrete under 1.4-180 d
Fig.18 Trend of elastic modulus of concrete with different osmotic pressure and different erosion days
Fig.19 Fitting curve
Fig.20 CT section pictures at 8,6,4,2 and 0 mm erosion depth under different osmotic pressure were taken in turn
Fig.21 Scanning electron micrograph of erosion specimen under different osmotic pressure
[1]   侯会明, 胡大伟, 周辉, 等 考虑开挖损伤的高放废物地质处置库温度-渗流-应力耦合数值模拟方法[J]. 岩土力学, 2020, 41 (03): 1056- 1064+1094
HOU Hui-ming, HU Da-wei, ZHOU Hui, et al Thermo-hydro-mechanical coupling numerical simulation method for high-levelwaste geological repository considering excavation damage[J]. Rock and Soil Mechanics, 2020, 41 (03): 1056- 1064+1094
[2]   白卫峰, 刘霖艾, 管俊峰 基于统计损伤理论的硫酸盐侵蚀混凝土本构模型研究[J]. 工程力学, 2019, 36 (2): 66- 77
BAI Wei-feng, LIU Lin-ai, GUAN Jun-feng The constitutive model of concrete subjected to sulfate attack based on statistical damage theory[J]. Engineering Mechanics, 2019, 36 (2): 66- 77
doi: 10.6052/j.issn.1000-4750.2017.09.0734
[3]   尧俊凯, 叶阳升, 王鹏程 硫酸盐侵蚀水泥改良路基段上拱研究[J]. 岩土工程学报, 2019, 41 (4): 782- 788
YAO Jun-kai, YE Yang-sheng, WANG Peng-cheng Subgrade heave of sulfate attacking on cement-stabilized filler[J]. Journal of Geotechnical Engineering, 2019, 41 (4): 782- 788
[4]   金祖权, 孙伟, 张云升 混凝土在硫酸盐、氯盐溶液中的损伤过程[J]. 硅酸盐学报, 2006, 34 (5): 118- 123
JIN Zu-quan, SUN Wei, ZHANG Yun-sheng Damage process of concrete in sulfate and chloride solution[J]. Journal of Silicate, 2006, 34 (5): 118- 123
[5]   梁咏宁, 袁迎曙 超声检测混凝土硫酸盐侵蚀的研究[J]. 混凝土, 2004, (8): 15- 17
LIANG Yong-ning, YUAN Ying-shu Detection of sulfate attacking on concrete with ultrasound[J]. Concrete, 2004, (8): 15- 17
doi: 10.3969/j.issn.1002-3550.2004.08.004
[6]   宋玉普, 宋立元, 赵敏 混凝土海洋平台抗氯离子侵蚀耐久寿命预测试验研究[J]. 大连理工大学学报, 2005, 45 (5): 88- 92
SONG Yu-pu, SONG Li-yuan, ZHAO Min Experimental study of durable life prediction resisting chloride ion penetration for concrete of shore platforms[J]. Journal of Dalian University of Technology, 2005, 45 (5): 88- 92
[7]   ACKER P Swelling, shrinkage and creep: a mechanical approach to cement hydration[J]. Materials and Structures, 2004, 37 (4): 237- 243
doi: 10.1007/BF02480632
[8]   黄巍林, 马志鸣, 赵铁军 混凝土在海洋环境下硫酸盐侵蚀机理研究[J]. 混凝土与水泥制品, 2014, (7): 17- 20
HUANG Wei-lin, MA Zhi-ming, ZHAO Tie-jun Study on sulfate corrosion mechanism of concrete in marine environment[J]. Concrete and Cement Products, 2014, (7): 17- 20
doi: 10.3969/j.issn.1000-4637.2014.07.005
[9]   贾洪全, 宫经伟, 王小龙 硫酸盐浓度对水泥基材料侵蚀的影响研究[J]. 水力发电, 2020, 46 (3): 1- 4
JIA Hong-quan, GONG Jing-wei, WANG Xiao-long Effect of sulfate concentration on the erosion of cement-based materials[J]. Hydroelectric Power Generation, 2020, 46 (3): 1- 4
[10]   王倩, 张鹏, 吴健奇 海水侵蚀下混凝土的劣化损伤分析[J]. 连云港职业技术学院学报, 2016, 29 (3): 5- 7
WANG Qian, ZHANG Peng, WU Jian-qi Deterioration damage analysis of concrete under seawater erosion[J]. Journal of Lianyungang Vocational and Technical College, 2016, 29 (3): 5- 7
doi: 10.3969/j.issn.1009-4318.2016.03.002
[11]   何鹏涛, 李新玲, 沈卫国 模拟海水对高性能混凝土浆体的侵蚀作用研究[J]. 硅酸盐通报, 2016, 35 (10): 3319- 3323
HE Peng-tao, LI Xin-ling, SHEN Wei-guo Erosion effect on the high-performance concrete paste under simulative seawater[J]. Silicate Bulletin, 2016, 35 (10): 3319- 3323
[12]   GU W, YAO Z Evaluation of surface cracking in micron and sub-micron scale scratch tests for optical glass BK7[J]. Journal of Mechanical Science and Technology, 2011, 25 (5): 1167- 1174
doi: 10.1007/s12206-011-0306-2
[13]   KARINE V, SANDRINE M, DENIS D, et al Determination by nanoindentation of elastic modulus and hardness of pure constituents of Portland cement clinker[J]. Cement and Concrete Research, 2001, 31 (4): 555- 561
doi: 10.1016/S0008-8846(00)00505-6
[14]   CONSTANTINIDES G, ULM F J, VLIET K V On the use of nanoindentation for cementitious materials[J]. Materials and Structures, 2003, 36 (3): 191- 196
doi: 10.1007/BF02479557
[15]   MURTHY A R, IYER N R, PRASAD B K R Characterization and evaluation of micro-mechanical properties of ultra high strength concrete by using micro-indentation test[J]. Journal of The Institution of Engineers (India), 2016, 97 (3): 231- 238
doi: 10.1007/s40030-016-0179-6
[16]   国家质量监督检验检疫总局. 通用硅酸盐水泥GB 175—2007 [S]. 北京: 中国标准出版社, 2008: 6.
[17]   国家质量监督检验检疫总局. 用于水泥和混凝土中的粉煤灰GB/T 1596—2017 [S]. 北京: 中国标准出版社, 2018: 6.
[18]   国家技术监督局. 用于水泥和混凝土中的粒化高炉矿渣粉GB/T 18046—2008 [S]. 北京: 中国标准出版社, 2009: 6.
[19]   国家质量监督检验检疫总局. 建设用卵石、碎石GB/T 14685—2011 [S]. 北京: 中国标准出版社, 2012: 2.
[20]   国家质住房和城乡建设部. 普通混凝土长期性能和耐久性能试验方法标准GB/T 50082—2009 [S]. 北京: 中国标准出版社, 2010: 7.
[21]   Anon. Metallic materials-instrumented indentation test for hardness and materials parameters-part 1: test method ISO 14577-1-2015[S]. Madrid: [s.n.], 2016: 1.
[1] Lei XIE,Qing-hua LI,Shi-lang XU. Dynamic compressive properties and constitutive model of reactive powder concrete[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 999-1009.
[2] Xiao-hu WANG,Ni-du JIKE,Shan CHEN,Yu-xuan QI,Yu PENG,Qiang ZENG. Water imbibition in concrete in-situ traced by transmission X-ray radiography[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 727-732.
[3] Xin SONG,Wei-jie FAN,Jiang-hong MAO,Wei-liang JIN. Dynamic control effect of chloride in concrete based on multi-level electromigration[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 511-518.
[4] Yong YAO,Zhen-jun YANG,Qi ZHANG. Experiment research on improving interface performance of steel fiber and mortal by silane coatings[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 1-9.
[5] Pei GE,Wei HUANG,Meng LI. Experimental study on recycled brick aggregate concrete frame model[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 10-19.
[6] Kang-qiao HUANG,Cheng ZHAO,Wei ZHOU,Xing-hong LIU,Gang MA. Three-dimensional mesoscopic study on freeze-thaw of concrete based on multi-field coupled model[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 62-70.
[7] Wei-lin SU,Xing-Gao LI,Yu XU,Da-long JIN. Numerical simulation of shield tool cutting concrete based on HJC model[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1106-1114.
[8] Ya-ting ZHANG,Roesler Jeffery. Cracking of continuously reinforced concrete pavement based on large-scale model test[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1194-1201.
[9] Xing-lang FAN,Sheng-jie GU,Jia-fei JIANG,Xi WU. Computational method of punching-shear capacity of concrete slabs reinforced with FRP bars[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1058-1067.
[10] Jun LUO,Xu-dong SHAO,Jun-hui CAO,Wei FAN,Bi-da PEI. Orthogonal test and calculation method of cracking load of steel-ultra-high performance concrete composite specimen[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 909-920.
[11] Hai-long WANG,Yuan-jian WU,Jia-yan LING,Xiao-yan SUN. Bond degradation between corroded stainless steel bar and concrete[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 843-850.
[12] Jin XIA,Run-li GAN,Yan FANG,Yu-xi ZHAO,Wei-liang JIN. Experimental study on direct shear performance of concrete-concrete interface of prefabricated structure sleeve grouting connection[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 491-498.
[13] Xiao-yan SUN,Gui TANG,Hai-long WANG,Qun WANG,Zhi-cheng ZHANG. Effect of 3D printing path on mechanical properties of arch concrete bridge[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2085-2091.
[14] Jin-feng WANG,Ai-ping ZHANG,Wen-hao WANG. Effects of stud height on shear behavior of stud connectors[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2076-2084.
[15] Yong-gui WANG,Shuai-peng LI,Peter HUGHES,Yu-hui FAN,Xiang-yu GAO. Elevated temperatures performance of modified recycled aggregate concrete[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2047-2057.