1. College of Pipeline and Civil Engineering, China University of Petroleum, Qingdao 266580, China 2. School of Petroleum Engineering, China University of Petroleum, Qingdao 266580, China
A new temperature-pressure state parameter was defined in order to reflect the influence of temperature-pressure environment on the mechanical properties of hydrate-bearing sediments. Based on the mechanism of temperature-pressure environment on the mesoscopic structure of the sediments, a multi-scale elastic parameter prediction model was proposed by using the three-phase sphere model considering the influence of temperature-pressure environment on the mesoscopic components and the contact interface of each component. Then, based on the traditional Duncan-Chang model and the statistical damage theory, a Duncan-Chang statistical damage model was established by introducing the ultimate damage value. The validity and reasonability of the proposed model were verified by comparing the triaxial tests data of hydrate-bearing sediments under different temperature and pore pressure conditions with the predicted results of the model. Results show that the model can take into account the effects of hydrate saturation, temperature and pore pressure environment, grain size grading of sediments skeleton. It can well simulate the stress-strain characteristics of hydrate-bearing sediments under different temperature and pore pressure environments.
Fig.1Schematic diagram of mesoscopic contact of hydrate-bearing sediments
Fig.2Methane hydrate phase equilibrium curve
Fig.3Schematic diagram of the homogenization process of hydrate-bearing sediments
Fig.4Relationship between volume modulus of liquid water in pores and temperature and pore pressure
Fig.5Toyoura sand particle size distribution curve
Fig.6Relationship between elastic modulus of methane hydrate and state parameters of temperature and pore pressure
ξ
SMH/%
φMH/%
F0
m
0.971 0
0
0
18.183 0
1.949 1
0.971 0
26.6
11.69
21.359 4
3.731 3
0.971 0
46.6
18.85
28.047 9
5.422 5
Tab.1Model parameters with different hydrate saturation
σ3/MPa
SMH/%
φMH/%
F0
m
1
34.8
0.147 6
10.894 4
4.574 4
2
34.8
0.147 6
16.695 5
3.809 9
3
34.8
0.147 6
22.361 9
2.908 9
Tab.2Model parameters under different confining pressure
ξ
SMH/%
φMH/%
F0
m
0.957 0
23.2
10.35
27.297 1
4.393 3
0.965 6
23.2
10.35
22.533 3
4.091 9
0.971 0
24.7
10.95
18.896 6
3.726 8
0.971 0
46.6
18.85
29.168 8
4.591 3
0.991 3
42.5
17.45
23.110 3
3.427 5
Tab.3Model parameters under different P-T condition
Fig.7Comparison between experimental results and calculated results of stress-strain curves of hydrate-bearing sediments at different conditions
[1]
PRIEST J A, BEST A I, CLAYTON C R I A laboratory investigation into the seismic velocities of methane gas hydrate-bearing sand[J]. Journal of Geophysical Research: Solid Earth, 2005, 110: B04102
[2]
WAITE W F, SANTAMARINA J C, CORTES D D, et al Physical properties of hydrate-bearing sediments[J]. Reviews of Geophysics, 2009, 47 (4): 465- 484
[3]
NING F, YU Y, KJELSTRUP S, et al Mechanical properties of clathrate hydrates: status and perspectives[J]. Energy and Environmental Science, 2012, 5 (5): 6779- 6795
doi: 10.1039/c2ee03435b
[4]
SOGA K, LEE S L, NG M Y A, et al. Characterisation and engineering properties of methane hydrate soils [C]// 2nd International Workshop on Characterisation and Engineering Properties of Natural Soils. London: Taylor and Francis Group, 2006: 2591-2642.
[5]
MORIDIS G, COLLETT T S, POOLADI DARVISH M, et al Challenges, uncertainties and issues facing gas production from gas-hydrate deposits[J]. SPE Reservoir Evaluation and Engineering, 2011, 14 (1): 76- 112
doi: 10.2118/131792-PA
[6]
SEOL J, LEE H Natural gas hydrate as a potential energy resource: from occurrence to production[J]. Korean Journal of Chemical Engineering, 2013, 30 (4): 771- 786
doi: 10.1007/s11814-013-0033-8
[7]
NIXON M F, GROZIC J L Submarine slope failure due to gas hydrate dissociation: a preliminary quantification[J]. Canadian Geotechnical Journal, 2007, 44 (3): 314- 325
doi: 10.1139/t06-121
[8]
COLLETT T, BAHK J J, BAKER R, et al Methane hydrates in nature-current knowledge and challenges[J]. Journal of Chemical and Engineering Data, 2015, 60 (2): 319- 329
doi: 10.1021/je500604h
[9]
DANGAYACH S, SINGH D N, KUMAR P, et al Thermal instability of gas hydrate bearing sediments: some issues[J]. Marine and Petroleum Geology, 2015, 67: 653- 662
doi: 10.1016/j.marpetgeo.2015.05.034
[10]
LIJITH K P, MALAGAR B R C, SINGH D N A comprehensive review on the geomechanical properties of gas hydrate bearing sediments[J]. Marine and Petroleum Geology, 2019, 104: 270- 285
doi: 10.1016/j.marpetgeo.2019.03.024
[11]
SONG Y, ZHU Y, LIU W, et al The effects of methane hydrate dissociation at different temperatures on the stability of porous sediments[J]. Journal of Petroleum Science and Engineering, 2016, 147: 77- 86
doi: 10.1016/j.petrol.2016.05.009
[12]
LIU Z, WEI H, LI P, et al An easy and efficient way to evaluate mechanical properties of gas hydrate-bearing sediments: the direct shear test[J]. Journal of Petroleum Science and Engineering, 2017, 149: 56- 64
doi: 10.1016/j.petrol.2016.09.040
[13]
HYODO M, LI Y, YONEDA J, et al Mechanical behavior of gas-saturated methane hydrate-bearing sediments[J]. Journal of Geophysical Research: Solid Earth, 2013, 118 (10): 5185- 5194
doi: 10.1002/2013JB010233
[14]
HYODO M, YONEDA J, YOSHIMOTO N, et al Mechanical and dissociation properties of methane hydrate-bearing sand in deep seabed[J]. Soils and Foundations, 2013, 53 (2): 299- 314
doi: 10.1016/j.sandf.2013.02.010
[15]
蒋明镜, 朱方园 一个深海能源土的温度−水压−力学二维微观胶结模型[J]. 岩土工程学报, 2014, 36 (8): 1377- 1386 JIANG Ming-jing, ZHU Fang-yuan A two-dimensional thermal-hydro-mechanical bond contact model for methane hydrate bearing soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36 (8): 1377- 1386
doi: 10.11779/CJGE201408001
[16]
JIANG M, HE J, WANG J, et al DEM analysis of geomechanical properties of cemented methane hydrate–bearing soils at different temperatures and pressures[J]. International Journal of Geomechanics, 2015, 16 (3): 1- 25
[17]
吴二林, 魏厚振, 颜荣涛, 等 考虑损伤的含天然气水合物沉积物本构模型[J]. 岩石力学与工程学报, 2012, 31 (Suppl.1): 3045- 3050 WU Er-lin, WEI Hou-zhen, YAN Rong-tao, et al Constitutive model for gas hydrate-bearing sediments considering damage[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31 (Suppl.1): 3045- 3050
[18]
颜荣涛, 梁维云, 韦昌富, 等 考虑赋存模式影响的含水合物沉积物的本构模型研究[J]. 岩土力学, 2017, 38 (1): 10- 18 YAN Rong-tao, LIANG Wei-yun, WEI Chang-fu, et al A constitutive model for gas hydrate-bearing sediments considering hydrate occurring habits[J]. Rock and Soil Mechanics, 2017, 38 (1): 10- 18
[19]
祝效华, 孙汉文, 赵金洲, 等 天然气水合物沉积物等效变弹性模量损伤本构模型[J]. 石油学报, 2019, 40 (9): 1085- 1094 ZHU Xiao-hua, SUN Han-wen, ZHAO Jinzhou, et al Damage constitutive model of equivalent variable elastic modulus for gas hydrate sediments[J]. Acta Petrolei Sinica, 2019, 40 (9): 1085- 1094
doi: 10.7623/syxb201909006
[20]
颜荣涛, 张炳晖, 杨德欢, 等 不同温−压条件下含水合物沉积物的损伤本构关系[J]. 岩土力学, 2018, 12 (39): 4421- 4428 YAN Rong-tao, ZHANG Bing-hui, YANG De-huan, et al Damage constitutive model for hydrate-bearing sediment under different temperature and pore pressure conditions[J]. Rock and Soil Mechanics, 2018, 12 (39): 4421- 4428
[21]
NG C W W, BAGHBANREZVAN S, KADLICEK T, et al A state-dependant constitutive model for methane hydrate-bearing sediments inside the stability region[J]. Géotechnique, 2020, 70 (12): 1094- 1108
doi: 10.1680/jgeot.18.P.143
[22]
PINKERT S, GROZIC J L H failure mechanisms in cemented hydrate-bearing sands[J]. Journal of Chemical and Engineering Data, 2015, 60 (2): 376- 382
doi: 10.1021/je500638c
[23]
MAKOGON I F. Hydrates of hydrocarbons [M]. [S.L]: Pennwell Books, 1997.
[24]
CHRISTENSEN R M, LO K H Solutions for effective shear properties in three phase sphere and cylinder models[J]. Journal of the Mechanics and Physics of Solids, 1979, 27 (4): 315- 330
doi: 10.1016/0022-5096(79)90032-2
[25]
张研, 韩林. 细观力学基础[M]. 北京: 科学出版社, 2014: 99-102.
[26]
邓方茜, 徐礼华, 池寅, 等 基于均匀化理论的混杂纤维混凝土有效弹性模量计算[J]. 硅酸盐学报, 2019, 47 (2): 161- 170 DENG Fang-qian, XU Li-hua, CHI Yan, et al Calculation of effective elastic modulus for hybrid fiber reinforced concrete based on homogenization theory[J]. Journal of the Chinese Ceramic Society, 2019, 47 (2): 161- 170
[27]
CHANG D, LAI Y, ZHANG M A meso-macroscopic constitutive model of frozen saline sandy soil based on homogenization theory[J]. International Journal of Mechanical Sciences, 2019, (59): 246- 259
[28]
王尚旭 含气地层弹性性质及其波场响应[J]. 石油与天然气地质, 2005, (6): 730- 735 WANG Shang-xu Elastic properties of gas-bearing strata and seismic response[J]. Oil and Gas Geology, 2005, (6): 730- 735
doi: 10.3321/j.issn:0253-9985.2005.06.005
[29]
CHAOUACHI M, FALENTY A, SELL K, et al Microstructural evolution of gas hydrates in sedimentary matrices observed with synchrotron X-ray computed tomographic microscopy[J]. Geochemistry Geophysics Geosystems, 2015, 16: 1711- 1722
doi: 10.1002/2015GC005811
[30]
HYODO M, NAKATA Y, YOSHIMOTO N, et al. Triaxial compressive strength of methane hydrate [C]// The Twelfth International Offshore and Polar Engineering Conference. Kitakyushu: [s. n.], 2002.
[31]
SONG Y, YU F, LI Y, et al Mechanical property of artificial methane hydrate under triaxial compression[J]. Journal of Natural Gas Chemistry, 2010, 19 (3): 246- 250
doi: 10.1016/S1003-9953(09)60073-6
[32]
NABESHIMA Y, MATSUI T. Static shear behaviors of methane hydrate and ice [C]// Fifth ISOPE Ocean Mining Symposium. Tsukuba: [s. n.], 2003: 156-159.
[33]
NABESHIMA Y, TAKAI Y, KOMAI T. Compressive strength and density of methane hydrate [C]// Sixth ISOPE Ocean Mining Symposium. Changsha: [s. n.], 2005.
[34]
HYODO M, NAKATA Y, YOSHIMOTO N, et al Basic research on the mechanical behavior of methane hydrate-sediments mixture[J]. Soils and Foundations, 2005, 45 (1): 75- 85
[35]
MIYAZAKI K, TENMA N, AOKI K, et al A nonlinear elastic model for triaxial compressive properties of artificial methane hydrate-bearing sediment samples[J]. Energies, 2012, 5 (10): 4057- 4075
doi: 10.3390/en5104057
[36]
颜荣涛, 韦昌富, 傅鑫晖, 等 水合物赋存模式对含水合物土力学特性的影响[J]. 岩石力学与工程学报, 2013, (Suppl.2): 4115- 4122 YAN Rong-tao, WEI Chang-fu, FU Xin-hui, et al Influence of occurrence mode of hydrate on mechanical behavior of hydrate-bearing soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, (Suppl.2): 4115- 4122
[37]
MIYAZAKI K, MASUI A, SAKAMOTO Y, et al Triaxial compressive properties of artificial methane hydrate-bearing sediment[J]. Journal of Geophysical Research Atmospheres, 2011, 116: 1- 11
[38]
YONEDA J, JIN Y, KATAGIRI J, et al Strengthening mechanism of cemented hydrate-bearing sand at microscales[J]. Geophysical Research Letters, 2016, 43 (14): 7442- 7450
doi: 10.1002/2016GL069951
[39]
WU P, LI Y, LIU W, et al Cementation failure behavior of consolidated gas hydrate-bearing sand[J]. Journal of Geophysical Research Solid Earth, 2020, 125 (1): 1- 19
[40]
JIANG M, CHEN H, TAPIAS M, et al Study of mechanical behavior and strain localization of methane hydrate bearing sediments with different saturations by a new DEM model[J]. Computers and Geotechnics, 2014, 57: 122- 138
doi: 10.1016/j.compgeo.2014.01.012
[41]
JIANG M, HE J, WANG J, et al Discrete element analysis of the mechanical properties of deep-sea methane hydrate-bearing soils considering interparticle bond thickness[J]. Comptes Rendus Mécanique, 2017, 345 (12): 868- 889
[42]
沈珠江 结构性粘土的弹塑性损伤模型[J]. 岩土工程学报, 1993, 15 (3): 21- 28 SHEN Zhu-jiang An elasto-plastic damage model for cemented clay[J]. Chinese Journal of Geotechnical Engineering, 1993, 15 (3): 21- 28
doi: 10.3321/j.issn:1000-4548.1993.03.003
[43]
LEMAITRE J A continuous damage mechanics model for ductile fracture[J]. Journal of Engineering Materials and Technology, 1985, 107 (1): 83- 89
doi: 10.1115/1.3225775
[44]
JIANG M, LIU J, SHEN Z DEM simulation of grain-coating type methane hydrate bearing sediments along various stress paths[J]. Engineering Geology, 2019, 261: 1- 13
[45]
YU Y, CHENG Y P, XU X, et al Discrete element modelling of methane hydrate soil sediments using elongated soil particles[J]. Computers and Geotechnics, 2016, 80 (12): 397- 409
[46]
周博, 王宏乾, 王辉, 等 可燃冰沉积物宏细观力学特性真三轴试验离散元模拟[J]. 中国石油大学学报:自然科学版, 2020, 44 (1): 131- 140 ZHOU Bo, WANG Hong-qian, WANG Hui, et al Discrete element simulation of true triaxial tests on macro and meso mechanical properties of combustible ice sediments[J]. Journal of China University of Petroleum: Natural Science, 2020, 44 (1): 131- 140
[47]
蒋明镜, 刘俊, 申志福 裹覆型能源土力学特性真三轴试验离散元数值分析[J]. 中国科学: 物理学 力学 天文学, 2019, 49 (3): 1- 12 JIANG Ming-jing, LIU Jun, SHEN Zhi-fu Investigating the mechanical behavior of grain-coating type methane hydrate bearing sediment in true triaxial compression tests by distinct element method[J]. SCIENTIA SINICA Physica Mechanica and Astronomica, 2019, 49 (3): 1- 12
[48]
田振元, 王伟, 朱其志, 等 基于Lade-Duncan强度准则的统计损伤本构模型及其修正研究[J]. 科学技术与工程, 2014, 14 (35): 104- 109 TIAN Zhen-yuan, WANG Wei, ZHU Qi-zhi, et al A statistical damage constitutive model and its modifying method based on Lade-Duncan failure criterion[J]. Science Technology and Engineering, 2014, 14 (35): 104- 109
doi: 10.3969/j.issn.1671-1815.2014.35.019
[49]
LAI Y, LI S, QI J, et al Strength distributions of warm frozen clay and its stochastic damage constitutive model[J]. Cold Regions Science and Technology, 2008, 53 (2): 200- 215
doi: 10.1016/j.coldregions.2007.11.001