1. Faculty of Engineering, China University of Geosciences, Wuhan 430074, China 2. Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China 3. Hubei Key Laboratory of Blasting Engineering, Jianghan University, Wuhan 430056, China
The dynamic failure mechanism of concrete pipeline with corroded inner-wall subjected to blasting was analyzed in order to ensure the safety of buried concrete pipeline which had been in service for many years under the influence of blasting vibration load. A theoretical model for predicting the corrosion defects of the inner wall of concrete pipes during the operation period was established based on the concrete corrosion theory of Thistlethwayte. The numerical modeling method and parameter selection of blasting dynamic response of concrete pipeline with bell-and-spigot joints were verified based on the full-scale blasting model test and vibration analysis of concrete pipeline with bell-and-spigot joints. Numerical tests of dynamic response of concrete pipeline with bell-and-spigot joints under different corrosion defects were conducted through the prediction of corrosion defects. The dynamic performance evolution of corrosion pipeline under blasting vibration load was analyzed. The main control dynamic failure criterion of corroded pipeline was established with the ultimate strength criterion. The safety control standard of corroded concrete pipeline with bell-and-spigot joints under the influence of blasting vibration was proposed.
Tab.6Statistical relationship between peak value of maximum principal stress and peak vibration speed
t/a
h/mm
vp/ (cm·s?1)
≤10.2
0
22.80
11.9
5
21.08
13.5
10
20.41
15.2
15
19.13
16.9
20
17.81
18.5
25
17.14
20.2
30
15.62
Tab.7Vibration velocity control of concrete pipe blasting with different corrosion depths
[1]
张黎明, 赵明生, 池恩安, 等 爆破振动对地下管道影响试验及风险预测[J]. 振动与冲击, 2017, 36 (16): 241- 247 ZHANG Li-ming, ZHAO Ming-sheng, CHI En-an, et al Experiments for effect of blasting vibration on underground pipeline and risk prediction[J]. Journal of Vibration and Shock, 2017, 36 (16): 241- 247
[2]
王栋, 何历超, 王凯 钻爆法施工对邻近埋地管道影响的现场实测与数值模拟分析[J]. 土木工程学报, 2017, 50 (Supple.2): 134- 140 WANG Dong, HE Li-chao, WANG Kai Field measurement and numerical simulation for influence of blasting excavation on adjacent buried pipelines[J]. China Civil Engineering Journal, 2017, 50 (Supple.2): 134- 140
doi: 10.15951/j.tmgcxb.2017.s2.021
[3]
JIANG N, ZHU B, HE X, et al Safety assessment of buried pressurized gas pipelines subject to blasting vibrations induced by metro foundation pit excavation[J]. Tunnelling and Underground Space Technology, 2020, 102: 103448
doi: 10.1016/j.tust.2020.103448
[4]
WU T Y, JIANG N, ZHOU C B, et al. Experimental and numerical investigations on damage assessment of high-density polyethylene pipe subjected to blast loads [J]. Engineering Failure Analysis, 2022, 131: 105856.
[5]
FRANCINI R B, BALTZ W N Blasting and construction vibrations near existing pipelines: what are the appropriate levels?[J]. Journal of Pipeline Engineering, 2009, 8 (4): 253- 262
[6]
ZHAO K, JIANG N, ZHOU C B, et al Dynamic behavior and failure of buried gas pipeline considering the pipe connection form subjected to blasting seismic waves[J]. Thin-Walled Structures, 2022, 170: 108495
doi: 10.1016/j.tws.2021.108495
[7]
SHI C H, ZHAO Q J, LEI M F, et al Vibration velocity control standard of buried pipeline under blast loading of adjacent tunnel[J]. Soils and Foundations, 2020, 59 (6): 2195- 2205
[8]
张玉琦, 蒋楠, 贾永胜, 等 运营充水状态高密度聚乙烯管的爆破振动响应特性[J]. 浙江大学学报: 工学版, 2020, 54 (11): 2120- 2127 ZHANG Yu-qi, JIANG Nan, JIA Yong-sheng, et al Blasting vibration characteristics of high-density polyethylene pipes in operation water-filled state[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (11): 2120- 2127
[9]
GAO F, JI C, LONG Y, et al Numerical investigation of the dynamic response of CWC structures subjected to underwater explosion loading[J]. Ocean Engineering, 2020, 203 (11): 107214
[10]
GUAN X M, ZHANG L, WANG Y W, et al Velocity and stress response and damage mechanism of three types pipelines subjected to highway tunnel blasting vibration[J]. Engineering Failure Analysis, 2020, 118: 104840
doi: 10.1016/j.engfailanal.2020.104840
[11]
OUALIT M, JAUBERTHIE R, RENDELL F, et al External corrosion to concrete sewers: a case study[J]. Urban Water, 2012, 9 (6): 429- 434
doi: 10.1080/1573062X.2012.668916
[12]
THISTLETHWAYTE D K B. The control of sulphides in sewerage systems [M]. Michigan: ANN Arbor Science Publishers, 1972.
[13]
JIANG G, KELLER J, BOND P L, et al Predicting concrete corrosion of sewers using artificial neural network[J]. Water Research, 2016, 92: 52- 60
doi: 10.1016/j.watres.2016.01.029
[14]
LI X, KHADEMI F, LIU Y, et al Evaluation of data-driven models for predicting the service life of concrete sewer pipes subjected to corrosion[J]. Journal of Environmental Management, 2019, 234: 431- 439
沈新普, 王琛元, 周琳 一个钢筋混凝土损伤塑性本构模型及工程应用[J]. 工程力学, 2007, 24 (9): 122- 128 SHEN Xin-pu, WANG Chen-yuan, ZHOU Lin A damage plastic constitutive model for reinforced concrete and its engineering application[J]. Engineering Mechanics, 2007, 24 (9): 122- 128
doi: 10.3969/j.issn.1000-4750.2007.09.019
[18]
张玉琦, 蒋楠, 周传波, 等 地铁基坑爆破振动作用邻近高层框架建筑物结构动力响应[J]. 煤炭学报, 2019, 44 (Supple.1): 118- 125 ZHANG Yu-qi, JIANG Nan, ZHOU Chuan-bo, et al Dynamic response of building structures with high-rise frames caused by blasting vibration at adjacent subway foundation pit[J]. Journal of China Coal Society, 2019, 44 (Supple.1): 118- 125
[19]
赵铮, 陶钢, 杜长星 爆轰产物JWL状态方程应用研究[J]. 高压物理学报, 2009, 23 (4): 277- 282 ZHAO Zheng, TAO Gang, DU Chang-xing, et al Application research on JWL equation of state of detonation products[J]. Chinese Journal of High Pressure Physics, 2009, 23 (4): 277- 282
doi: 10.3969/j.issn.1000-5773.2009.04.007
朱斌, 蒋楠, 周传波, 等 基坑开挖爆破作用邻近压力燃气管道动力响应特性研究[J]. 振动与冲击, 2020, 39 (11): 201- 208 ZHU Bin, JIANG Nan, ZHOU Chuan-bo, et al Effect of excavation blast vibration on adjacent buried gas pipeline in a foundation pit[J]. Journal of Vibration and Shock, 2020, 39 (11): 201- 208
doi: 10.13465/j.cnki.jvs.2020.11.027
[22]
夏宇磬, 蒋楠, 姚颖康, 等 粉质黏土层预埋承插式混凝土管道对爆破振动的动力响应[J]. 爆炸与冲击, 2020, 40 (4): 73- 83 XIA Yu-qing, JIANG Nan, YAO Ying-kang, et al Dynamic responses of a concrete pipeline with bell-and-spigot joints buried in a silty clay layer to blasting seismic waves[J]. Explosion and Shock Waves, 2020, 40 (4): 73- 83
doi: 10.11883/bzycj-2019-0207
[23]
CEB (1993) CEB-FIP model code 1990: concrete structures [M]. London: Thomas Telford Services Ltd, 1993.