Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (7): 1342-1352    DOI: 10.3785/j.issn.1008-973X.2022.07.010
    
Dynamic failure mechanism of concrete pipeline with corroded inner-wall subjected to blasting
Yi-wen HUANG1(),Nan JIANG1,3,*(),Chuan-bo ZHOU1,Hai-bo LI2,Xue-dong LUO1,Ying-kang YAO3
1. Faculty of Engineering, China University of Geosciences, Wuhan 430074, China
2. Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
3. Hubei Key Laboratory of Blasting Engineering, Jianghan University, Wuhan 430056, China
Download: HTML     PDF(2250KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The dynamic failure mechanism of concrete pipeline with corroded inner-wall subjected to blasting was analyzed in order to ensure the safety of buried concrete pipeline which had been in service for many years under the influence of blasting vibration load. A theoretical model for predicting the corrosion defects of the inner wall of concrete pipes during the operation period was established based on the concrete corrosion theory of Thistlethwayte. The numerical modeling method and parameter selection of blasting dynamic response of concrete pipeline with bell-and-spigot joints were verified based on the full-scale blasting model test and vibration analysis of concrete pipeline with bell-and-spigot joints. Numerical tests of dynamic response of concrete pipeline with bell-and-spigot joints under different corrosion defects were conducted through the prediction of corrosion defects. The dynamic performance evolution of corrosion pipeline under blasting vibration load was analyzed. The main control dynamic failure criterion of corroded pipeline was established with the ultimate strength criterion. The safety control standard of corroded concrete pipeline with bell-and-spigot joints under the influence of blasting vibration was proposed.



Key wordsconcrete pipe with bell-and-spigot joints      internal corrosion      blasting vibration      dynamic response      safety criterion     
Received: 31 July 2021      Published: 26 July 2022
CLC:  TD 235  
Fund:  国家自然科学基金资助项目(41807265,41972286,42072309);爆破工程湖北省重点实验室开放基金资助项目(HKLBEF202001,HKLBEF202002)
Corresponding Authors: Nan JIANG     E-mail: h2428948778@163.com;jiangnan@cug.edu.cn
Cite this article:

Yi-wen HUANG,Nan JIANG,Chuan-bo ZHOU,Hai-bo LI,Xue-dong LUO,Ying-kang YAO. Dynamic failure mechanism of concrete pipeline with corroded inner-wall subjected to blasting. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1342-1352.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.07.010     OR     https://www.zjujournals.com/eng/Y2022/V56/I7/1342


内壁腐蚀混凝土管道爆破动力失效机制

为了确保爆破振动荷载影响下临近服役多年埋地混凝土管道的安全,开展内部腐蚀混凝土管道爆破动力失效机制的研究. 基于Thistlethwayte混凝土腐蚀理论,建立运营期混凝土管道内壁腐蚀缺陷预测理论模型. 结合全尺寸承插式混凝土管道爆破模型试验及振动分析,验证承插式混凝土管道爆破动力响应的数值建模方法及参数选择. 通过腐蚀缺陷预测,开展不同腐蚀缺陷形态下的承插式混凝土管道爆破动力响应数值试验,分析爆破振动荷载作用下的腐蚀管道动力性能演化规律. 结合极限强度准则,确立腐蚀管道主控动力失效准则,提出爆破振动影响下运营期内壁腐蚀承插式混凝土管道的安全控制标准.


关键词: 承插式混凝土管道,  内腐蚀,  爆破振动,  动力响应,  安全判据 
Fig.1 Corrosion mechanism of concrete pipe inner wall
Fig.2 Change of corrosion depth with time
Fig.3 Schematic diagram of field test
Fig.4 Numerical calculation model of blasting vibration of concrete pipeline
模型材料 ρ/(g·cm?3) E/GPa μ c/MPa φ/(°) σt/MPa
岩层 2.50 30 0.3 5.5 43 2.58
土层 1.98 0.1 0.33 0.035 15 0.028
混凝土管道 2.40 31 0.2 3.18 54.9 1.43
橡胶圈 1.20 0.49
炮泥 0.85 1.8×10?4 0.35
Tab.1 Material parameters of numerical model
参数 数值 参数 数值
ρ/(g·cm?3) 1.15 R1 4.15
v/(m·s?1) 4000 R2 0.95
A/GPa 214 E0/(J·m?3 4.19
B/GPa 0.182 ω 0.15
Tab.2 Parameters of explosive
监测点 vz/(cm·s?1) ez/% vy /(cm·s?1) ey/% vx /(cm·s?1) ex/%
现场监测 数值计算 现场监测 数值计算 现场监测 数值计算
D1 9.12 10.10 10.75 2.28 2.14 ?6.14 6.44 6.90 7.14
D2 12.56 12.90 2.71 3.64 3.25 ?10.71 7.95 7.02 ?11.70
D3 14.25 14.00 ?1.75 4.02 3.96 ?1.49 8.56 7.98 ?6.78
D4 14.46 14.50 0.28 3.19 2.88 ?9.72 7.53 7.36 ?2.26
D5 9.81 11.50 17.23 2.21 2.03 ?8.14 5.66 6.27 10.78
D6 9.02 10.07 11.64 2.16 1.86 ?15.28 3.12 3.22 3.21
Tab.3 Data of monitoring points in numerical calculation and field experiment
Fig.5 Time history curve of vibration speed of test and numerical in z direction at monitoring point D3
工况 h/mm t/a 工况 h/mm t/a
1 0 ≤10.2 5 20 16.9
2 5 11.9 6 25 18.5
3 10 13.5 7 30 20.2
4 15 15.2
Tab.4 Numerical calculation conditions of different pipeline corrosion depths
Fig.6 Corrosion setting of pipeline in model
Fig.7 Peak value of axial maximum principal stress at explosion side of pipeline with different corrosion depths
Fig.8 Peak value of maximum principal stress in dangerous section of pipeline with different corrosion depths
Fig.9 Stress time history curve of pipeline element with different corrosion depths
Fig.10 Nephogram of maximum principal stress of pipeline at different time
Fig.11 Peak vibration velocity of dangerous section of pipeline with different corrosion depths
Fig.12 Axial peak vibration velocity of pipeline with different corrosion depths
h/mm vm/(cm·s?1) σm/MPa h/mm vm/(cm·s?1) σm/MPa h/mm vm/(cm·s?1) σm/MPa
0 12.45 0.87 10 18.34 1.79 20 18.30 1.78
0 12.21 0.82 10 16.24 1.48 25 18.24 1.98
0 16.84 1.37 10 15.66 1.40 25 21.03 2.31
0 14.24 1.03 15 16.56 1.66 25 22.14 2.45
0 10.89 0.66 15 18.82 1.79 25 20.89 2.23
5 13.88 1.26 15 20.26 1.89 25 17.06 1.89
5 15.01 1.41 15 18.73 1.70 30 19.46 2.23
5 17.55 1.58 15 16.35 1.59 30 22.10 2.70
5 15.80 1.48 20 19.00 1.89 30 22.87 2.92
5 13.25 1.22 20 20.29 2.10 30 21.20 2.50
10 16.81 1.52 20 21.89 2.16 30 21.87 2.68
10 15.62 1.43 20 19.16 1.88
Tab.5 Statistics of maximum principal stress and vibration velocity of different sections
h/mm σmvm的统计关系 R2
0 ${\sigma _{\rm{m} } }{\text{ = } } - 0.608+0.117{v_{\rm{m}}}$ 0.994
5 ${\sigma _{\rm{m}}}{\text{ = } }0.205+0.088{v_{\rm{m}}}$ 0.987
10 ${\sigma _{\rm{m}}}{\text{ = } } - 0.736+0.137{v_{\rm{m}}}$ 0.957
15 ${\sigma _{\rm{m}}}{\text{ = } }0.797+0.066{v_{\rm{m}}}$ 0.830
20 ${\sigma _{\rm{m}}}{\text{ = } }0.101+0.110{v_{\rm{m}}}$ 0.891
25 ${\sigma _{\rm{m}}}{\text{ = } }0.209+0.108{v_{\rm{m}}}$ 0.988
30 ${\sigma _{\rm{m}}}{\text{ = } } - 1.299+0.215{v_{\rm{m}}}$ 0.973
Tab.6 Statistical relationship between peak value of maximum principal stress and peak vibration speed
t/a h/mm vp/ (cm·s?1)
≤10.2 0 22.80
11.9 5 21.08
13.5 10 20.41
15.2 15 19.13
16.9 20 17.81
18.5 25 17.14
20.2 30 15.62
Tab.7 Vibration velocity control of concrete pipe blasting with different corrosion depths
[1]   张黎明, 赵明生, 池恩安, 等 爆破振动对地下管道影响试验及风险预测[J]. 振动与冲击, 2017, 36 (16): 241- 247
ZHANG Li-ming, ZHAO Ming-sheng, CHI En-an, et al Experiments for effect of blasting vibration on underground pipeline and risk prediction[J]. Journal of Vibration and Shock, 2017, 36 (16): 241- 247
[2]   王栋, 何历超, 王凯 钻爆法施工对邻近埋地管道影响的现场实测与数值模拟分析[J]. 土木工程学报, 2017, 50 (Supple.2): 134- 140
WANG Dong, HE Li-chao, WANG Kai Field measurement and numerical simulation for influence of blasting excavation on adjacent buried pipelines[J]. China Civil Engineering Journal, 2017, 50 (Supple.2): 134- 140
doi: 10.15951/j.tmgcxb.2017.s2.021
[3]   JIANG N, ZHU B, HE X, et al Safety assessment of buried pressurized gas pipelines subject to blasting vibrations induced by metro foundation pit excavation[J]. Tunnelling and Underground Space Technology, 2020, 102: 103448
doi: 10.1016/j.tust.2020.103448
[4]   WU T Y, JIANG N, ZHOU C B, et al. Experimental and numerical investigations on damage assessment of high-density polyethylene pipe subjected to blast loads [J]. Engineering Failure Analysis, 2022, 131: 105856.
[5]   FRANCINI R B, BALTZ W N Blasting and construction vibrations near existing pipelines: what are the appropriate levels?[J]. Journal of Pipeline Engineering, 2009, 8 (4): 253- 262
[6]   ZHAO K, JIANG N, ZHOU C B, et al Dynamic behavior and failure of buried gas pipeline considering the pipe connection form subjected to blasting seismic waves[J]. Thin-Walled Structures, 2022, 170: 108495
doi: 10.1016/j.tws.2021.108495
[7]   SHI C H, ZHAO Q J, LEI M F, et al Vibration velocity control standard of buried pipeline under blast loading of adjacent tunnel[J]. Soils and Foundations, 2020, 59 (6): 2195- 2205
[8]   张玉琦, 蒋楠, 贾永胜, 等 运营充水状态高密度聚乙烯管的爆破振动响应特性[J]. 浙江大学学报: 工学版, 2020, 54 (11): 2120- 2127
ZHANG Yu-qi, JIANG Nan, JIA Yong-sheng, et al Blasting vibration characteristics of high-density polyethylene pipes in operation water-filled state[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (11): 2120- 2127
[9]   GAO F, JI C, LONG Y, et al Numerical investigation of the dynamic response of CWC structures subjected to underwater explosion loading[J]. Ocean Engineering, 2020, 203 (11): 107214
[10]   GUAN X M, ZHANG L, WANG Y W, et al Velocity and stress response and damage mechanism of three types pipelines subjected to highway tunnel blasting vibration[J]. Engineering Failure Analysis, 2020, 118: 104840
doi: 10.1016/j.engfailanal.2020.104840
[11]   OUALIT M, JAUBERTHIE R, RENDELL F, et al External corrosion to concrete sewers: a case study[J]. Urban Water, 2012, 9 (6): 429- 434
doi: 10.1080/1573062X.2012.668916
[12]   THISTLETHWAYTE D K B. The control of sulphides in sewerage systems [M]. Michigan: ANN Arbor Science Publishers, 1972.
[13]   JIANG G, KELLER J, BOND P L, et al Predicting concrete corrosion of sewers using artificial neural network[J]. Water Research, 2016, 92: 52- 60
doi: 10.1016/j.watres.2016.01.029
[14]   LI X, KHADEMI F, LIU Y, et al Evaluation of data-driven models for predicting the service life of concrete sewer pipes subjected to corrosion[J]. Journal of Environmental Management, 2019, 234: 431- 439
[15]   混凝土和钢筋混凝土排水管: GB/T11836-2009 [S]. 北京: 中国标准出版社, 2009.
[16]   HALLQUIST J. LS-DYNA keyword user’s manual R8.0 [M]. California: Livermore Software Technology Corporation, 2015.
[17]   沈新普, 王琛元, 周琳 一个钢筋混凝土损伤塑性本构模型及工程应用[J]. 工程力学, 2007, 24 (9): 122- 128
SHEN Xin-pu, WANG Chen-yuan, ZHOU Lin A damage plastic constitutive model for reinforced concrete and its engineering application[J]. Engineering Mechanics, 2007, 24 (9): 122- 128
doi: 10.3969/j.issn.1000-4750.2007.09.019
[18]   张玉琦, 蒋楠, 周传波, 等 地铁基坑爆破振动作用邻近高层框架建筑物结构动力响应[J]. 煤炭学报, 2019, 44 (Supple.1): 118- 125
ZHANG Yu-qi, JIANG Nan, ZHOU Chuan-bo, et al Dynamic response of building structures with high-rise frames caused by blasting vibration at adjacent subway foundation pit[J]. Journal of China Coal Society, 2019, 44 (Supple.1): 118- 125
[19]   赵铮, 陶钢, 杜长星 爆轰产物JWL状态方程应用研究[J]. 高压物理学报, 2009, 23 (4): 277- 282
ZHAO Zheng, TAO Gang, DU Chang-xing, et al Application research on JWL equation of state of detonation products[J]. Chinese Journal of High Pressure Physics, 2009, 23 (4): 277- 282
doi: 10.3969/j.issn.1000-5773.2009.04.007
[20]   室外排水设计规范: GB50014-2006(2016版) [S]. 北京: 中国计划出版社, 2006.
[21]   朱斌, 蒋楠, 周传波, 等 基坑开挖爆破作用邻近压力燃气管道动力响应特性研究[J]. 振动与冲击, 2020, 39 (11): 201- 208
ZHU Bin, JIANG Nan, ZHOU Chuan-bo, et al Effect of excavation blast vibration on adjacent buried gas pipeline in a foundation pit[J]. Journal of Vibration and Shock, 2020, 39 (11): 201- 208
doi: 10.13465/j.cnki.jvs.2020.11.027
[22]   夏宇磬, 蒋楠, 姚颖康, 等 粉质黏土层预埋承插式混凝土管道对爆破振动的动力响应[J]. 爆炸与冲击, 2020, 40 (4): 73- 83
XIA Yu-qing, JIANG Nan, YAO Ying-kang, et al Dynamic responses of a concrete pipeline with bell-and-spigot joints buried in a silty clay layer to blasting seismic waves[J]. Explosion and Shock Waves, 2020, 40 (4): 73- 83
doi: 10.11883/bzycj-2019-0207
[23]   CEB (1993) CEB-FIP model code 1990: concrete structures [M]. London: Thomas Telford Services Ltd, 1993.
[1] Dao-sheng LING,Wen-jun SHENG,Bo HUANG,Yun ZHAO. Influence of pavement unidirectional constraint on aircraft vibration response[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1684-1693.
[2] Ming-feng HUANG,Xin-rui WEI,He-kai YE,Jian-yun YE,Wen-juan LOU. Wind-induced response of crane structure with double flat arms for long-span transmission towers[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1351-1360.
[3] Yu-qi ZHANG,Nan JIANG,Yong-sheng JIA,Chuan-bo ZHOU,Xue-dong LUO,Ting-yao WU. Blasting vibration characteristics of high-density polyethylene pipes in operation water-filled state[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2120-2127.
[4] Yi-jia ZHAO,Yun-jian WANG,Yao-dong WANG,Wei ZHANG. Power prediction control of ISOP based on single phase shift control[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 160-168.
[5] Wen-jie ZHOU,Li-zhong WANG,Lv-jun TANG,Zhen GUO,Sheng-jie RUI,Yu-pei HUANG. Numerical analysis of dynamic responses of jacket supported offshore wind turbines[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1431-1437.
[6] ZHENG Yu-xin, XI Ying, BU Wang-hui, LI Meng-ru. Nonlinear characteristic analysis of 5-degree-of-freedom pure torsional model of RV reducer[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(11): 2098-2109.
[7] HU Cheng-bao, WANG Yun-gang, LING Dao-sheng. Physical essence and influence of model parameters on dynamic response of Rayleigh damping[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(7): 1284-1290.
[8] ZENG Chen, SUN Hong-lei, CAI Yuan-qiang, CAO Zhi-gang. Dynamic response of lined tunnel in saturated soil due to moving load[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(3): 511-521.
[9] XIANG Tian-yong, ZHANG Zheng-hong, WEN Min-jie, SHAN Sheng-dao. Dynamic response of a spherical biogas digester in saturated soil[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(2): 242-248.
[10] ZENG Chen, SUN Hong-lei, CAI Yuan-qiang, CAO Zhi-gang. Dynamic response of lined tunnel in saturated soil due to moving load[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(10): 1-2.
[11] SHI Li, CAI Yuan-qiang, PAN Xiao-dong. Study on vibrations of rail structure and saturated soil induced by train acceleration and deceleration[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(11): 1932-1938.
[12] WANG Kui-hua, WU Wen-bing, MA Shao-jun, MA Bo-ning. Influence of sediment characteristics on dynamic response
at top of rock-socketed pile
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(3): 402-408.
[13] CAI Yuan-qiang, CHEN Cheng-zhen, SUN Hong-lei. Dynamic response of tunnel in viscoelastic saturated
soil subjected to blast loads
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(9): 1657-1663.
[14] WANG Zhen-yu, LIANG Xu, LIU Guo-hua, CHENG Wei-feng. On the integral transform method for dynamic response solutions
of simply supported Kirchhoff plates with underwater explosion loading
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(11): 1972-1979.
[15] XIANG Yi-Jiang, SUN Jun. Dynamic response of bridge approach treated with deep-seated concrete slab[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(10): 1863-1869.