Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (8): 1431-1437    DOI: 10.3785/j.issn.1008-973X.2019.08.001
Civil and Structural Engineering     
Numerical analysis of dynamic responses of jacket supported offshore wind turbines
Wen-jie ZHOU1(),Li-zhong WANG1,Lv-jun TANG2,Zhen GUO1,*(),Sheng-jie RUI1,Yu-pei HUANG2
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. Zhejiang Electric Power Design Institute, Hangzhou 310012, China
Download: HTML     PDF(1778KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

For jacket supported offshore wind turbines (OWTs), numerical calculations and analysis were performed to investigate the dynamic responses of the whole structures under extreme cyclic loadings of typhoon condition. The series of pile-soil interaction models (p-y, t-z, Q-z) in the code of American Petroleum Institute (API), an elastoplastic t-z model considering the cyclic degradation of strength and stiffness axially in the pile-soil interface as well as an elastoplastic p-y model representing the lateral behaviors were used in the numerical simulations. Results show that the largest proportion of the anti-overturning moment at the mudline of jacket supported OWT is provided by the t-z spring. A negative contribution to the anti-overturning moment may be caused by the p-y spring, and the main function of p-y spring is to resist the horizontal loadings. The contribution from the Q-z spring is small and negligible. The rotation response at the top of jacket foundation may increase obviously with the consideration of the cyclic degradation effect of t-z spring. Considering the coupling degradation effects of the t-z and p-y springs, the translation of the jacket foundation will be more obvious and the displacement response at the top of the foundation will increase significantly. Thus the effects of the pile-soil cyclic degradation should be considered adequately in the engineering design.



Key wordsoffshore wind turbine      jacket foundation      dynamic response      pile      cyclic degradation      elastoplastic t-z model     
Received: 06 January 2019      Published: 13 August 2019
CLC:  TU 473  
  P 751  
  TK 89  
Corresponding Authors: Zhen GUO     E-mail: zhouwenjiesd@163.com;nehzoug@163.com
Cite this article:

Wen-jie ZHOU,Li-zhong WANG,Lv-jun TANG,Zhen GUO,Sheng-jie RUI,Yu-pei HUANG. Numerical analysis of dynamic responses of jacket supported offshore wind turbines. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1431-1437.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.08.001     OR     http://www.zjujournals.com/eng/Y2019/V53/I8/1431


导管架基础海上风机动力响应数值分析

针对导管架基础海上风机(OWTs),开展台风极端循环荷载下整体结构的动力响应数值计算与分析. 在数值计算中分别采用美国石油学会(API)规范的系列桩-土相互作用模型(p-yt-zQ-z)、可考虑桩-土界面竖向强度和刚度循环弱化效应的弹塑性t-z模型以及桩-土侧向弹塑性p-y模型. 数值研究结果表明,t-z弹簧对导管架基础海上风机泥面处抗倾覆弯矩的贡献最大;p-y弹簧的贡献可能为负,其主要作用为抵抗水平力;Q-z弹簧的贡献较小,可忽略不计. 考虑t-z弹簧的循环弱化效应会大大增加基础顶点处的转角响应;考虑t-zp-y弹簧循环弱化耦合作用,导管架基础的平动更为明显,基础顶点处的位移响应明显增大. 在工程设计中须对桩-土循环弱化效应予以充分考虑.


关键词: 海上风机,  导管架基础,  动力响应,  桩基,  循环弱化,  弹塑性t-z模型 
Fig.1 Schematic diagram of model for jacket supported offshore wind turbine
模型参数 数值
内摩擦角φ/(°) 39
地基弹性模量ηh/(N·m?3 3.4×107
p-y曲线形状参数hs 0.1
刚度衰减参数αd 0.001
有效重度γ'/(KN·m?3 10.4
Tab.1 Parameters of elastoplastic p-y model
Fig.2 Elastoplastic t-z model considering cyclic degradation
模型参数 数值 模型参数 数值
δ/(°) 21.5 B 2.5
z50/mm 0.5 a 0.04
h 4.0 b 0.5
τr/τu0 0.317
Tab.2 Parameters of elastoplastic t-z model after calibration
Fig.3 Comparison of simulation results of t-z model and interface shear test results under constant normal stiffness
计算工况 p-y模型 t-z模型 Q-z模型
1 API API API
2 API 弹塑性 API
3 弹塑性 API API
4 弹塑性 弹塑性 API
Tab.3 Calculation cases for different pile-soil interaction situations
模型 φ/(°) δ/(°) Nq A γ'/(KN·m?3
p-y模型 39 ? ? 0.9 10
t-z模型 ? 21.5 ? ? 10
Q-z模型 ? ? 20 ? 10
Tab.4 Parameters of p-y, t-z, Q-z models from API code
几何参数 数值
转子、轮毂、机舱集中质量/t 466.8
塔筒长度/m 73.0
塔筒底部直径/m 5.5
导管架部分高度/m 44.6
导管架顶部根开/m 12.0
导管架底部根开/m 22.0
桩长/m 50.0
桩径/m 2.0
桩壁厚/mm 30.0
Tab.5 Parameters of jacket supported offshore wind turbine
Fig.4 Schematic diagram of moment caculatuion of jacket foundation at mudline
Fig.5 Time history of contribution of different springs to anti-overturning moment at mudline
Fig.6 Time history chart of rotation response at top of jacket foundation top
Fig.8 Time history chart of vertical displacement response at top of jacket foundation
Fig.7 Time history chart of horizontal displacement response at top of jacket foundation
[1]   林楚 海上风电坐稳世界第三"十三五"目标有望完成[J]. 电力系统装备, 2017, (9): 18- 21
LIN Chu The goal of stabilizing offshore wind power in the 13th Five-Year Plan is expected to be fulfilled[J]. Equipment Electric Power System Equipment, 2017, (9): 18- 21
[2]   ABHINAV K A, SAHA N Stochastic response of jacket supported offshore wind turbines for varying soil parameters[J]. Renewable Energy, 2017, 101: 550- 564
doi: 10.1016/j.renene.2016.09.019
[3]   ACHMUS M, ABDEL-RAHMAN K, SCHAEFER D, et al. Capacity degradation method for driven steel piles under cyclic axial loading [C]// Proceedings of the Twenty-seventh International Ocean and Polar Engineering Conference. San Francisco: [s. n.], 2017: 362-368.
[4]   罗超, 曹文胜 台风对我国海上风电开发的影响[J]. 能源与环境, 2013, (3): 2- 3
LUO Chao, CAO Wen-shen The influence of typhoon on offshore wind power development in China[J]. Energy and Environment, 2013, (3): 2- 3
doi: 10.3969/j.issn.1672-9064.2013.03.001
[5]   American Petroleum Institute (API). Recommended practice for planning, designing and constructing fixed offshore platforms-working stress design: RP 2A-WSD [S]. Washington: API Publishing Services, 2000: 56-67.
[6]   WEI S, PARK H C, CHUNG C W, et al Soil-structure interaction on the response of jacket-type offshore wind turbine[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2015, 2 (2): 139- 148
doi: 10.1007/s40684-015-0018-7
[7]   ABHINAV K A, SAHA N Nonlinear dynamical behavior of jacket supported offshore wind turbines in loose sand[J]. Marine Structures, 2018, 57: 133- 151
doi: 10.1016/j.marstruc.2017.10.002
[8]   ABHINAV K A, SAHA N Coupled hydrodynamic and geotechnical analysis of jacket offshore wind turbine[J]. Soil Dynamics and Earthquake Engineering, 2015, 73: 66- 79
doi: 10.1016/j.soildyn.2015.03.002
[9]   Det Norske Veritas. Design of offshore wind turbine structures: DNV-OS-J101 [S]. Oslo: Det Norske Veritas, 2013: 173-174.
[10]   黄茂松, 马昊, 李森, 等 软黏土中水平受荷桩的静力和循环p–y曲线 [J]. 岩土工程学报, 2017, 39 (增2): 9- 12
HUANG Mao-song, MA Hao, LI Sen, et al Static and cyclic p-y curves for laterally loaded piles in soft clay [J]. Chinese Journal of Geotechnical Engineering, 2017, 39 (增2): 9- 12
[11]   朱斌, 熊根, 刘晋超, 等 砂土中大直径单桩水平受荷离心模型试验[J]. 岩土工程学报, 2013, 35 (10): 1807- 1815
ZHU Bin, XIONG Gen, LIU Jin-chao, et al Centrifuge modelling of a large-diameter single pile under lateral loads in sand[J]. Chinese Journal of Geotechnical Engineering, 2013, 35 (10): 1807- 1815
[12]   刘红军, 张冬冬, 吕小辉, 等 循环荷载下饱和粉土地基单桩水平承载特性试验研究[J]. 中国海洋大学学报: 自然科学版, 2015, 45 (1): 76- 82
LIU Hong-jun, ZHANG Dong-dong, LV Xiao-hui, et al Model tests on lateral bearing capacity of single piles under cyclic loads in saturated silt[J]. Periodical of Ocean University of China, 2015, 45 (1): 76- 82
[13]   ACHMUS M, KUO Y S, ABDELRAHMAN K Behavior of monopile foundations under cyclic lateral load[J]. Computers and Geotechnics, 2009, 36 (5): 725- 735
doi: 10.1016/j.compgeo.2008.12.003
[14]   胡安峰, 张光建, 贾玉帅, 等 刚度衰减模型在大直径桩累积侧向位移分析中的应用[J]. 浙江大学学报: 工学版, 2014, 48 (4): 721- 726
HU An-feng, ZHANG Guang-jian, JIA Yu-shuai, et al Application of degradation model in analysis of cumulative lateral displacement of monopile foundation[J]. Journal of Zhejiang University: Engineering Science,, 2014, 48 (4): 721- 726
[15]   苏栋 弹塑性p–y模型及非线性地基梁的增量有限元法 [J]. 岩土工程学报, 2012, 34 (8): 1469- 1474
SU Dong Elastoplastic p-y model and incremental finite element method for nonlinear foundation beams [J]. Journal of Geotechnical Engineering, 2012, 34 (8): 1469- 1474
[16]   ZHOU W J, WANG L Z, GUO Z, et al. A novel t-z model to predict the pile responses under axial cyclic loadings [J]. Computers and Geotechnics, 2019, 112: 120-134.
[17]   苏栋, 赵鹏, 高翔, 等 考虑泊松效应影响的弹塑性荷载传递模型[J]. 岩土力学, 2015, 36 (10): 2799- 2803
SU Dong, ZHAO Peng, GAO Xiang, et al Elastoplastic load transfer model considering Poisson effect[J]. Rock and Soil Mechanics, 2015, 36 (10): 2799- 2803
[18]   SU D, YAN W M A multidirectional p–y model for lateral sand-pile interactions [J]. Soils and Foundations, 2013, 53 (2): 199- 214
doi: 10.1016/j.sandf.2013.02.002
[19]   DAFALIAS Y F Bounding surface plasticity. I: mathematical foundation and hypoplasticity[J]. Journal of Engineering Mechanics, 1986, 112 (9): 966- 987
doi: 10.1061/(ASCE)0733-9399(1986)112:9(966)
[20]   LI X S A sand model with state-dependent dilatancy[J]. Géotechnique, 2002, 52 (3): 173- 186
doi: 10.1680/geot.2002.52.3.173
[21]   AIREY D W, AL-DOURI R H, POULOS H G Estimation of pile friction degradation from shear box tests[J]. Geotechnical Testing Journal, 1992, 15 (4): 388- 392
doi: 10.1520/GTJ10253J
[22]   TABUCANON J T, AIREY D W, POULOS H G Pile skin friction in sands from constant normal stiffness tests[J]. Geotechnical Testing Journal, 1995, 18 (3): 350- 364
doi: 10.1520/GTJ11004J
[23]   JONKMAN J, BUTTERFIELD S, MUSIAL W, et al. Definition of a 5-MW reference wind turbine for offshore system development: technical report NREL/TP-500-38060 [R]. Colorado: U. S. National Renewable Energy Laboratory, 2009: 12-13.
[1] Ren-qiang XI,Xiu-li DU,Pi-guang WANG,Cheng-shun XU,Kun XU. Integrated seismic response of monopile supported offshore wind turbines[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 757-766.
[2] Si XIAO,Kui-hua WANG,Meng-bo WANG. Vertical dynamic response of pile-soil plug based on surrounding fictitious soil pile model[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1593-1603.
[3] Xia SHANG,Mei-jia WANG,Liu-xiao XU,Li-hui ZHANG. Configuration optimization of electric vehicle charging facilities in urban areas[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1210-1217.
[4] Jie LAI,Yun LIU,Jian-ping XIN,Wei WANG,Chen-qiang GAO,Hai-bo ZHU. Shaking table test and numerical analysis on reinforced slope at Dali West Railway Station[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 870-878.
[5] Wen-tao HU,Dou LIU,Da-xin GENG,Ning WANG,Chang-jie XU,Xing SHANGGUAN,Jie MIN. Internal force and deformation of step-tapered pile under lateral loads[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 739-747.
[6] Jun-tao WU,Kui-hua WANG,Xin LIU,Fan SUN. Dynamic response of pile-surrounding soil based on inversion of existing pile dynamic theory[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 521-528.
[7] Hao-yu WU,Yong-sheng ZHAO,Yan-ping HE,Wen-gang MAO,Jie YANG,Xiao-li GU,Chao HUANG. Transient response analysis of tension-leg-platformfloating offshore wind turbine under tendon failure conditions[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2196-2203.
[8] Yi-jia ZHAO,Yun-jian WANG,Yao-dong WANG,Wei ZHANG. Power prediction control of ISOP based on single phase shift control[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 160-168.
[9] Jian-bin ZHAO,Yi-bo XI,Zhen-yu WANG. Fatigue damage calculation method of monopile supported offshore wind turbine[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1711-1719.
[10] De-qi TANG,Feng YU,Xiang-guo HUANG,Hai-bing CHEN,Tang-dai XIA. Chamber tests for investigating additional internal forces in existing foundation piles induced by excavation[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1457-1466.
[11] Dong-li LI,E-chuan YAN,Bin FENG,Yuan-qiang CAI. Impact of submarine debris flow on offshore piles[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2342-2347.
[12] Wei-ping CAO,Bing XIA,Xin GE. Formation and application of hyperbolic p-y curves for horizontally loaded single batter piles[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1946-1954.
[13] WANG Zhong-jin, ZHANG Ri-hong, WANG Kui-hua, FANG Peng-fei, XIE Xin-yu, XU Han-qiang, LI Jin-zhu. Bearing characteristic of static drill rooted pile considering condition of energy carrier[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(1): 11-18.
[14] ZHANG Zheng-xuan, CHEN Gang, XU Quan-biao, GONG Shun-feng, XIAO Zhi-bin, LIU Cheng-bin. Experimental study on flexural and shear performance of prestressed steel strand ultra-high strength concrete H-type piles[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(1): 31-39.
[15] LIU Jun-wei, ZHU Na, WANG Li-zhong, SHANG Wen-chang. Degenerate mechanism of sand-steel interface under cyclic loading[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(6): 1123-1130.