Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (9): 1685-1692    DOI: 10.3785/j.issn.1008-973X.2022.09.001
    
Parameter study on finite element model of abrupt hanger-breakage event induced dynamic responses of suspension bridge
Wen-liang QIU1(),Hao-rong YANG1,Guang-run WU1,2,*()
1. Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China
2. School of Architecture and Civil Engineering, Liaocheng University, Liaocheng 252059, China
Download: HTML     PDF(1165KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Using the finite element method (FEM), the calculation model of suspension bridge was established to investigate hanger-breakage event induced dynamic responses considering the influence of main cable’s local vibration. The influence degree of main cable’s local vibration on structural dynamic responses of suspension bridge subjected to an abrupt hanger-breakage event was studied. A parametric study was conducted, in which the influencing factors included the physical bending stiffness of the main cable, the grid density of the element, the mass of the clamp, the damping ratio of the model and the initial state of the hanger stress. Some suggestions were given to improve the accuracy of calculation results. The influencing factors included the physical bending stiffness of the main cable, the grid density of the element, the mass of the cable clamp, the damping ratio of the model and the initial state of the hanger stress. Results show that the local vibration of the main cable has an un-neglected influence on the accuracy of the calculation results in the dynamic analysis of the cable breakage of suspension bridges. In the finite element model, the main cable physical bending stiffness, element mesh density and cable clamp mass are the key parameters affecting the local vibration of the main cable. Both the overall modal damping and the local damping of the main cable can effectively suppress the vibration of the main cable at the break point. The difference between the local main cable element damping and the overall modal damping of the structure should be taken account in the analysis model. The dynamic response of structural broken cable increases with the increase of initial stress, but the dynamic amplification coefficient of structural broken cable response changes little.



Key wordssuspension bridge      hanger-breakage event      dynamic response      local vibration      damping     
Received: 07 September 2021      Published: 28 September 2022
CLC:  U 447  
Fund:  国家自然科学基金资助项目(51778108)
Corresponding Authors: Guang-run WU     E-mail: qwl@dlut.edu.cn;wuguangrun@outlook.com
Cite this article:

Wen-liang QIU,Hao-rong YANG,Guang-run WU. Parameter study on finite element model of abrupt hanger-breakage event induced dynamic responses of suspension bridge. Journal of ZheJiang University (Engineering Science), 2022, 56(9): 1685-1692.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.09.001     OR     https://www.zjujournals.com/eng/Y2022/V56/I9/1685


悬索桥断索动力响应有限元模型参数研究

采用有限元方法(FEM)建立考虑主缆局部振动影响因素的悬索桥断索动力分析模型,研究主缆局部振动对悬索桥断索动力响应的影响程度. 对主缆物理抗弯刚度、单元网格密度、索夹质量、模型阻尼比以及吊索应力初始状态等因素进行参数分析,给出提高计算结果精度的建议. 结果表明:在进行悬索桥断索动力分析时,主缆局部振动对计算结果精度具有不可忽略的影响;有限元模型中主缆物理弯曲刚度、单元网格密度和索夹质量均是影响主缆局部振动的关键参数. 结构整体模态阻尼和主缆局部阻尼均能有效抑制断索点主缆振动,分析模型须考虑局部主缆单元阻尼和结构整体模态阻尼的差异. 结构断索动力响应随着断裂吊索初始应力增大而增大,结构断索响应动力放大系数变化幅度不大.


关键词: 悬索桥,  断索,  动力响应,  局部振动,  阻尼 
Fig.1 Hanger-breakage event simulating through unloading equivalent force method
Fig.2 General layout of suspension bridge
Fig.3 Cross section of stiffening girder
Fig.4 Three-dimensional finite element model of bridge
Fig.5 Time-history curves of structural dynamic response caused by hanger-breakage event
Fig.6 Effect of main cable ’s grid density on dynamical amplification factor
Fig.7 Effect of clamp mass on dynamical amplification factor
Fig.8 Effect of main cable ’s physical stiffness on dynamical amplification factor
Fig.9 Time-history curves of free vibration for calculating damping ratio of model
ξ ξB ξT ξloc
工况1) 工况2)
%
0.5 0.48 0.52 3.13 0.17
1.5 1.49 1.47 4.92 0.26
2.5 2.44 2.53 5.94 0.32
Tab.1 Modal damping ratio of structure and local vibration damping ratio of main cable in unmodified finite element model
ξ ξB ξT ξloc
工况1) 工况2)
%
0.5 0.52 0.53 5.31 2.5
1.5 1.51 1.51 6.27 2.5
2.5 2.51 2.55 7.17 2.5
0.5 0.54 0.53 6.73 5.0
1.5 1.55 1.57 8.04 5.0
2.5 2.57 2.59 9.03 5.0
Tab.2 Modal damping ratio of structure and local vibration damping ratio of main cable in modified finite element model
Fig.10 Effect of modal damping ratio of structure and local vibration damping ratio of main cable on dynamic amplification factor of hanger-breakage event induced responses
σ0,23a/ Mpa σ0,24a/MPa σmax,24a/Mpa ησ M0/(MN·m) Mmax/(MN·m) ηM T0/(MN·m) Tmax/(MN·m) ηT
204 511 707 2.45 3.78 5.63 1.60 8.65 16.27 1.70
305 457 782 2.43 2.24 6.51 1.58 4.32 19.19 1.69
407 406 844 2.37 0.57 7.45 1.58 0.00 21.94 1.67
509 360 916 2.41 ?1.08 8.33 1.56 4.34 25.33 1.70
611 320 966 2.39 ?2.76 9.26 1.56 8.54 28.61 1.71
712 277 1020 2.37 ?4.41 10.19 1.56 12.81 31.63 1.71
814 231 1072 2.34 ?6.06 11.09 1.56 17.28 34.57 1.71
Tab.3 Effect of hangers’ initial state on hanger-breakage event induced responses
[1]   KAWAI Y, SIRINGORINGO D, FUJINO Y Failure analysis of the hanger clamps of the Kutai-Kartanegara Bridge from the fracture mechanics viewpoint[J]. Journal of JSCE, 2014, 2: 1- 6
doi: 10.2208/journalofjsce.2.1_1
[2]   Recommendations for stay cable design, testing and installation: PTI DC45.1-12[S]. Phoenix: [s.n.], 2012.
[3]   SHAO  G,  JIN  H,  JIANG  R,  et  al. Dynamic  response  and robustness evaluation of cable-supported arch bridges subjected to  cable  breaking[J]. Shock and Vibration, 2021, 2021: 6689630
[4]   沈锐利, 房凯, 官快 单根吊索断裂时自锚式悬索桥强健性分析[J]. 桥梁建设, 2014, 44 (6): 35- 39
SHEN Rui-li, FANG Kai, GUAN Kuai Robustness analysis of self-anchored suspension bridge with loss of a single sling[J]. Bridge Construction, 2014, 44 (6): 35- 39
[5]   吴庆雄, 余印根, 陈宝春 下承式钢管混凝土刚架系杆拱桥吊杆断裂动力分析[J]. 振动与冲击, 2014, 33 (15): 144- 149
WU Qing-xiong, YU Yin-gen, CHEN Bao-chun Dynamic analysis for cable loss of a rigid-frame tied through concrete-filled steel tubular arch bridge[J]. Journal of Vibration and Shock, 2014, 33 (15): 144- 149
[6]   张羽, 方志, 卢江波, 等 大跨混凝土斜拉桥施工过程中结构的断索动力响应[J]. 振动与冲击, 2021, 40 (5): 237- 246
ZHANG Yu, FANG Zhi, LU Jiang-bo, et al Broken cable- induced dynamic response of long-span concrete cable stayed bridge during construction[J]. Journal of Vibration and Shock, 2021, 40 (5): 237- 246
[7]   RUIZ-TERAN A M, APARICIO A C Response of under-deck cable-stayed bridges to the accidental breakage of stay cables[J]. Engineering Structures, 2009, 31 (7): 1425- 1434
doi: 10.1016/j.engstruct.2009.02.027
[8]   ZHOU Y, CHEN S Numerical investigation of cable breakage events on long-span cable-stayed bridges under stochastic traffic and wind[J]. Engineering Structures, 2015, 105: 299- 315
doi: 10.1016/j.engstruct.2015.07.009
[9]   邱文亮, 吴广润 悬索桥吊索断索动力响应分析的有限元模拟方法研究[J]. 湖南大学学报: 自然科学版, 2021, 48 (11): 22- 30
QIU Wen-liang, WU Guang-run Research on simulation method of dynamic response analysis of suspension bridges subjected to hanger-breakage events[J]. Journal of Hunan University: Natural Sciences, 2021, 48 (11): 22- 30
[10]   沈国辉, 孙炳楠, 叶尹, 等 高压输电塔的断线分析和断线张力计算[J]. 浙江大学学报:工学版, 2011, 45 (4): 678- 683
SHEN Guo-hui, SUN Bing-nan, YE Yin, et al Broken wire analysis and broken wire load calculation of high voltage transmission tower[J]. Journal of Zhejiang University: Engineering Science, 2011, 45 (4): 678- 683
[11]   XIANG Y, CHEN Z, BAI B, et al Mechanical behaviors and experimental study of submerged floating tunnel subjected to local anchor-cable failure[J]. Engineering Structures, 2020, 212: 110521
doi: 10.1016/j.engstruct.2020.110521
[12]   中交公路规划设计院有限公司. 公路悬索桥设计规范: JTG/T D65-05-2015[S]. 北京: 人民交通出版社, 2015.
[13]   刘弋. 缆索承重桥梁结构模态阻尼的理论模型、识别方法和统计特征[D]. 上海: 同济大学, 2014.
LIU Yi. Theoretical model, identification method and statistical characteristics of modal damping of cable bearing bridge structure [D]. Shanghai: Tongji University, 2014.
[14]   严琨, 沈锐利 基于细长梁单元的悬索桥主缆线形分析[J]. 计算力学学报, 2016, 33 (3): 381- 387
YAN Kun, SHEN Rui-li Study on main cable shape of suspension bridge based on slender beam element[J]. Chinese Journal of Computational Mechanics, 2016, 33 (3): 381- 387
[15]   李晓章, 谢旭, 张鹤 桥梁拉索用CFRP线材阻尼特性试验研究和理论分析[J]. 工程力学, 2015, 32 (1): 176- 183
LI Xiao-zhang, XIE Xu, ZHANG He Experimental and theoretical studies on the damping properties of CFRP wire used in bridge cables[J]. Engineering mechanics, 2015, 32 (1): 176- 183
[16]   谢旭, 中村一史, 前田研一, 等 CFRP拉索阻尼特性实验研究和理论分析[J]. 工程力学, 2010, 27 (3): 205- 211
XIE Xu, NAKAMURA Hitoshi, MAEDA Kenyichi, et al Theoretical analysis and experimental test on damping characteristics of CFRP stay cables[J]. Engineering Mechanics, 2010, 27 (3): 205- 211
[1] Yi-wen HUANG,Nan JIANG,Chuan-bo ZHOU,Hai-bo LI,Xue-dong LUO,Ying-kang YAO. Dynamic failure mechanism of concrete pipeline with corroded inner-wall subjected to blasting[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1342-1352.
[2] Bo-zhi WANG,Bo LI,Wen WEI,Su-ying OU,Hua-yang CAI,Qing-shu YANG. Water surface profile dynamics and underlying mechanism of typical transverse channels in Pearl River channel network[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1375-1384.
[3] Xiao-long WANG,Hai-feng LV,Jin-ying HUANG,Guang-pu LIU. Model-free feedforward/feedback control scheme for magnetorheological damper[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 873-878.
[4] Dao-sheng LING,Wen-jun SHENG,Bo HUANG,Yun ZHAO. Influence of pavement unidirectional constraint on aircraft vibration response[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1684-1693.
[5] Ming-feng HUANG,Xin-rui WEI,He-kai YE,Jian-yun YE,Wen-juan LOU. Wind-induced response of crane structure with double flat arms for long-span transmission towers[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1351-1360.
[6] Yang-jian LI,Wei HE,Hong-wei LIU,Wei LI,Yong-gang LIN,Ya-jing GU. Active damping control for drive train of horizontal-axis tidal current turbines[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1355-1361.
[7] Xin-shan ZHUANG,Han-wen ZHAO,Jun-xiang WANG,Yong-jie HUANG. Experimental study of dynamic elastic modulus and damping ratio of expansive soil in Hefei[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 759-766.
[8] Yi-jia ZHAO,Yun-jian WANG,Yao-dong WANG,Wei ZHANG. Power prediction control of ISOP based on single phase shift control[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 160-168.
[9] Shui-guang TONG,Jia-zhi MIAO,Zhe-ming TONG,Shun HE,Shu-feng XIANG,Xiang-hui SHUAI. Finite element analysis and optimization for static and dynamic characteristics of diesel forklift frame[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1637-1646.
[10] Jian-bin ZHAO,Yi-bo XI,Zhen-yu WANG. Fatigue damage calculation method of monopile supported offshore wind turbine[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1711-1719.
[11] Wen-jie ZHOU,Li-zhong WANG,Lv-jun TANG,Zhen GUO,Sheng-jie RUI,Yu-pei HUANG. Numerical analysis of dynamic responses of jacket supported offshore wind turbines[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1431-1437.
[12] Wei-liang QIAO,Lai-hao MA,Xing FENG,Yu-qing SUN. Radiation of water waves induced by oscillation of floating body with porous structure[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(7): 1423-1430.
[13] Cheng ZHANG,Tao JIN,Pei-qiang LI,Hui-qiong DENG. Wide-area coordination control strategy for power system using multi-objective bat algorithm[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 589-597.
[14] Shuai LIU,Chao PAN,Zhi-guang ZHOU. Seismic performance and parametric influences of damping-coupled wall system[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 492-502.
[15] ZHENG Yu-xin, XI Ying, BU Wang-hui, LI Meng-ru. Nonlinear characteristic analysis of 5-degree-of-freedom pure torsional model of RV reducer[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(11): 2098-2109.