Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (7): 1355-1361    DOI: 10.3785/j.issn.1008-973X.2020.07.014
    
Active damping control for drive train of horizontal-axis tidal current turbines
Yang-jian LI(),Wei HE,Hong-wei LIU*(),Wei LI,Yong-gang LIN,Ya-jing GU
State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(2059KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An active damping controller was designed based on previous research in wind energy in order to minimize the resonant torsional oscillations of the weakly damped transmission system of tidal current turbines. The proposed method of active damping strategy added the compensation torque in opposite direction to the speed deviation. The poles of drivetrain system moved away from imaginary axes which indicated that the equivalent damping increased to reduce the resonant torsional load. Multibody system method and finite element analysis were used to identify the parameters of gearbox system in order to obtain the accurate low order torsional modes of transmission system. The theoretical result of the drivetrain resonant frequency was experimentally verified by an onshore experiment. A simulation model for a 650 kW tidal current turbine was constructed in Matlab/Simulink. A substitution sea trial experiment in low current speed condition was conducted to validate the feasibility of proposed active damping.



Key wordstidal current turbine      modal analysis      damping control      transmission system      load control     
Received: 31 May 2019      Published: 05 July 2020
CLC:  TK 73  
Corresponding Authors: Hong-wei LIU     E-mail: liyangjian@126.com;zju000@163.com
Cite this article:

Yang-jian LI,Wei HE,Hong-wei LIU,Wei LI,Yong-gang LIN,Ya-jing GU. Active damping control for drive train of horizontal-axis tidal current turbines. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1355-1361.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.07.014     OR     http://www.zjujournals.com/eng/Y2020/V54/I7/1355


水平轴海流能机组传动链主动阻尼控制技术

为了减小海流能发电机组在弱阻尼状态下的传动链谐振,借鉴风电领域的动态加阻技术,为海流能传动链设计主动阻尼控制器,通过海流能发电机组的转矩控制系统,给发电机施加和转速波动方向相反的波纹转矩. 主动阻尼控制使传动链系统极点远离虚轴,为传动系统增加等效阻尼,减小谐振. 为了准确得到传动链的低阶模态,利用多体系统法和有限元仿真方法,对传动系统的参数进行辨识,根据传动系统拖动实验的转速波动信号,对理论分析的结果进行验证. 通过Matlab/Simulink的建模仿真以及650 kW海流能机组在低流速工况下的等效海试实验,验证了主动阻尼控制对传动系统的有良好的减振效果.


关键词: 海流能机组,  模态分析,  阻尼控制,  传动系统,  载荷控制 
Fig.1 Schematic diagram of drive chain
参数 数值
叶片和轮毂 ${I_1}$ 54 151.73
一级传动的行星架 ${I_2}$ 445.68
一级传动的太阳轮 $I_2'$ 404.35
二级传动的行星架 ${I_3}$ 23.96
二级传动的太阳轮 $I_3'$ 19.59
发电机刹车盘等 ${I_4}$ 280.50
Tab.1 Inertia calculated for modeling of system kg·m2
Fig.2 Drive chain system of 650 kW tidal current energy generating set
Fig.3 Finite element model analysis for stiffness of LSS
参数 数值
低速轴k1 5.356×103
中间轴k2 4.205×103
高速轴k3 4.601
Tab.2 Stiffness value for modeling of system 104 N·m/rad
Fig.4 Block diagram of transmission system
Fig.5 Mode graph of drive train system
Fig.6 Onshore test of drive train
Fig.7 Spectrogram of generator speed
Fig.8 Block diagram of active damping control system
Fig.9 Diagram of Simulink simulation
Fig.10 Simulation result of damping control (Bg=50 N·m·s/rad)
Fig.11 Simulation result of damping control(Bg=100 N·m·s/rad)
Fig.12 Simulation result of damping control(Bg=200 N·m·s/rad)
Fig.13 650 kW tidal current turbine of ZJU
Fig.14 Speed of sea trail without damping control
Fig.15 Result of sea trail with active damping control
[1]   WINTER A I. Differences in fundamental design drivers for wind and tidal turbines [C]//Oceans. Santander, Spain: IEEE, 2011: 1-10.
[2]   ZHOU Z, BENBOUZID M, CHARPENTIER J F, et al Developments in large marine current turbine technologies: a review[J]. Renewable and Sustainable Energy Reviews, 2017, 71: 852- 858
doi: 10.1016/j.rser.2016.12.113
[3]   GENG H, XU D, WU B, et al Comparison of oscillation damping capability in three power control strategies for PMSG-based WECS[J]. Wind Energy, 2011, 14 (3): 389- 406
doi: 10.1002/we.428
[4]   BOSSANYI E A Wind turbine control for load reduction[J]. Wind Energy, 2003, 6 (3): 229- 244
doi: 10.1002/we.95
[5]   彭超 风力发电机组传动链调谐惯量阻尼器研究[J]. 太阳能学报, 2018, 39 (7): 2036- 2043
PENG Chao Research of tuned inertia damper for wind turbine drive rain[J]. Acta Energiae Solaris Sinica, 2018, 39 (7): 2036- 2043
[6]   MANDIC G, NASIRI A, MULJADI E, et al Active torque control for gearbox load reduction in a variable-speed wind turbine[J]. IEEE Transactions on Industry Applications, 2012, 48 (6): 2424- 2432
doi: 10.1109/TIA.2012.2227131
[7]   WHITE W N, FATEH F, YU Z. Torsional resonance active damping in grid tied wind turbines with gearbox, DFIG, and power converters [C]//American Control Conference. Chicago: IEEE, 2015.
[8]   LIU H W, MA S, LI W, et al A review on the development of tidal current energy in China[J]. Renewable and Sustainable Energy Reviews, 2011, 15 (2): 1141- 1146
doi: 10.1016/j.rser.2010.11.042
[9]   LIU H W, LI W, LIN Y G, et al Tidal current turbine based on hydraulic transmission system[J]. Journal of Zhejiang University-Science A: Applied Physics and Engineering, 2011, 12 (7): 511- 518
[10]   LI Y J, LIU H W, LIN Y G, et al Design and test of a 600 kW horizontal-axis tidal current turbine[J]. Energy, 2019, 182: 177- 186
doi: 10.1016/j.energy.2019.05.154
[11]   顾亚京, 李伟, 刘宏伟, 等 潮流发电系统功率控制及并网运行[J]. 浙江大学学报:工学版, 2017, 51 (10): 1974- 1980
GU Ya-jing, LI Wei, LIU Hong-wei, et al Study on power control and grid-connected operation for tidal current energy conversion system[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (10): 1974- 1980
[12]   XU Q K, LIU H W, LIN Y G, et al Development and experiment of a 60 kW horizontal-axis marine current power system[J]. Energy, 2015, 88: 149- 156
doi: 10.1016/j.energy.2015.04.018
[1] Ling-xiao ZENG,Hong-wei LIU,Wei LI,Yong-gang LIN,Ya-jing GU. Cooperative control of power and load based on pitch system[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 750-756.
[2] Jin WANG,Xiang-kun WANG,Jian-hui FU,Guo-dong LU,Chao-chao JIN,Yan-zhi CHEN. Static and dynamic characteristic analysis and structure optimization for crossbeam structure of heavy-duty truss robot[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 124-134.
[3] Guang-hao HU,Jin-xue XUE,Wen-ju MA,Zhi-li LONG. Design and experiment of longitudinal-flexural composite ultrasonic transducer for chip bonding[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1335-1340.
[4] Sarina,Shu-you ZHANG,Le-miao QIU,Li-chun ZHANG. Schematic design of mechanism system based on transmission affordance evaluation[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2179-2189.
[5] Cheng ZHANG,Tao JIN,Pei-qiang LI,Hui-qiong DENG. Wide-area coordination control strategy for power system using multi-objective bat algorithm[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 589-597.
[6] ZHANG De-sheng, LIU An, CHEN Jian, ZHAO Rui-jie, SHI Wei-dong. Multi-objective optimization of horizontal axis tidal current turbine using particle swarm optimization[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(12): 2349-2355.
[7] XU Quan-kun, LI Wei, LIU Hong-wei, LIN Yong-gang, SHI Mao-shun. Individual blade pitching system  for horizontal axis tidal current turbine[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(3): 528-534.
[8] LIU Cheng, WANG Kun, WANG Xiong-hai. Optimal deployment of tidal current turbines based on particle swarm algorithm[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(12): 2087-2093.
[9] GUAN Fu-ling,DAI Lu. Dynamic analysis and test research
of double-ring deployable truss structure
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(9): 1605-1610.
[10] YAN Bo, JIANG Dao-zhuo, GAN De-qiang, ZANG Yu-qing. An UPFC nonlinear robust controller based on feedback
linearization H∞ method
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(11): 1975-1980.
[11] NI He, XIAO Hang, CHENG Gang, SUN Feng-rui. Optimization of load controller for steam power plant using
evolutionary algorithm and chaos
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(12): 2202-2207.
[12] LEI Zhi-li, AI Xin, CUI Ming-yong, LIU Xiao. Simulation on series harmonic resonance of microgrid
based on modal assessment method
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(1): 178-184.
[13] JIANG Gang, HE Wen, ZHENG Jian-Yi. Mechanism and experimental research on high frequency vibratory stress relief[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(7): 1269-1272.