Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (3): 589-597    DOI: 10.3785/j.issn.1008-973X.2019.03.021
Electrical Engineering     
Wide-area coordination control strategy for power system using multi-objective bat algorithm
Cheng ZHANG1,2(),Tao JIN2,Pei-qiang LI1,Hui-qiong DENG1
1. School of Information Science and Engineering, Fujian University of Technology, Fuzhou 350118, China
2. College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350116, China
Download: HTML     PDF(1484KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

There is interaction between multiple power system stabilizers in the wide-area power grid, which affects the control effect of the whole system. Therefore, a coordinated design method of multi-objective wide area damping controller based on bat algorithm was proposed. This method made use of the population diversity of bat algorithm to keep the algorithm’s ability of continuous optimization in the iterative optimization process, which ensures that the algorithm has good convergence and accuracy. Taking the real part and damping ratio of the electromechanical oscillation mode as the objective function, the parameter optimization problem of the stabilizer of multi-machine power system was reduced to the multi-objective optimization problem with inequality constraint. The simulation results show that the proposed method can improve the eigenvalue distribution of the system’s weak electromechanical mode, effectively suppress the low frequency oscillation, and has good control effect and robustness.



Key wordsmulti-objective bat algorithm      objective function      electromechanical oscillation mode      damping controller      wide-area coordination control     
Received: 04 April 2018      Published: 04 March 2019
CLC:  TM 72  
Cite this article:

Cheng ZHANG,Tao JIN,Pei-qiang LI,Hui-qiong DENG. Wide-area coordination control strategy for power system using multi-objective bat algorithm. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 589-597.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.03.021     OR     http://www.zjujournals.com/eng/Y2019/V53/I3/589


采用多目标蝙蝠算法的电力系统广域协调控制策略

广域电网中多个电力系统稳定器之间存在相互作用,影响整个系统的控制效果,为此提出一种基于蝙蝠算法的多目标广域阻尼控制器协调设计方法. 该方法利用蝙蝠算法中种群的多样性,使得算法在迭代寻优过程中保持持续优化的能力,保证算法具有较好的收敛性和准确性;以机电振荡模态的实部和阻尼比为目标函数,将多机电力系统稳定器参数优化问题归结为带不等式约束的多目标优化问题. 分别在四机两区域系统和新英格兰典型系统的多种运行方式下进行仿真,结果表明:所提方法能够改善系统弱机电模式的特征值分布,有效抑制低频振荡,具有良好的控制效果和鲁棒性.


关键词: 多目标蝙蝠算法,  目标函数,  机电振荡模式,  阻尼控制器,  广域协调控制 
Fig.1 Conventional power system stabilizer (PSS)mathematical model
Fig.2 Expected region of objective function J in complex plane
测试函数 PSO BA
x* t/s x* t/s
f (xy) 6.110 4×10?4 0.452 8 3.223×10?7 0.210 4
g (xy) 8.322 5×10?4 0.507 4 3.825×10?7 0.238 5
Tab.1 Comparison of calculation results using bat algorithm (BA)and particle swarm optimization (PSO)algorithm
Fig.3 Wide-area coordinated control flow chart of multi-target BA
振荡模式 特征值 ζ / % f / Hz 主导机组
1 ?0.629 ± j7.368 0.084 1.173 G1
2 ?0.605 ± j7.218 0.083 1.149 G3
3 0.032 ± j3.995 ?0.012 0.636 G2,G3
Tab.2 Open-loop oscillation mode without PSS(Operation mode 1)
发电机 K T1/s T2/s
G1 20.12 0.211 0.102
G2 20.32 0.203 0.101
G3 20.24 0.216 0.101
Tab.3 Optimized PSS parameters with BA (Scheme A)
发电机 K T1/s T3/s
G1 17.504 0.914 0.266
G3 19.382 0.117 0.819
G2,G3(广域) 11.935 0.819 0.142
Tab.4 Optimized wide-area PSS parameters (Scheme B)
Fig.4 Signal curve for Speed change of generators G1 to G4 under disturbance
Fig.5 Power curve of tie-line under small disturbance
Fig.6 Signal curve for speed change of generators G1 to G4 under short-circuit fault
Fig.7 Tie-line power curve under short circuit fault
Fig.8 Distribution of eigenvalues with or without PSS
Fig.9 Diagram of New England system
振荡模式 运行方式Ⅰ′ 运行方式Ⅱ′ 运行方式Ⅲ′
特征值 ζ/% 特征值 ζ/% 特征值 ζ/%
1 ?0.077 2 ± j3.404 9 2.266 9 ?0.072 4 ± j3.285 2 2.204 0 ?0.021 3 ± j3.080 2 0.690 9
2 ?0.237 1 ± j5.779 3 4.098 5 ?0.201 5 ± j5.595 7 3.598 4 ?0.167 1 ± j5.542 6 3.012 8
3 ?0.209 1 ± j6.216 3 3.361 4 ?0.190 5 ± j5.903 8 3.224 6 ?0.260 6 ± j5.917 3 4.399 5
4 ?0.252 5 ± j6.855 4 3.680 8 ?0.285 1 ± j6.681 1 4.263 6 ?0.183 2 ± j6.225 4 2.941 6
5 ?0.208 6 ± j7.476 6 2.788 8 ?0.197 1 ± j7.455 1 2.643 3 ?0.199 5 ± j7.484 5 2.665 0
6 ?0.319 9 ± j8.131 1 3.931 0 ?0.320 7 ± j8.129 2 3.941 4 ?0.313 9 ± j8.017 6 3.912 7
7 ?0.297 2 ± j8.618 3 3.446 7 ?0.298 5 ± j8.596 5 3.470 7 ?0.289 4 ± j8.487 2 3.407 3
8 ?0.372 0 ± j8.841 2 4.203 8 ?0.372 5 ± j8.841 1 4.209 1 ?0.347 9 ± j8.779 1 3.959 4
9 ?0.694 5 ± j10.855 5 6.384 6 ?0.694 3 ± j10.851 2 6.385 2 ?0.690 1 ± j10.811 7 6.370 0
Tab.5 Eigenvalue of electromechanical mode without PSS in New England system
振荡模式 类型 f/Hz 参与机组
1 区间 0.542 (G10)vs(G1,G2,G3,G4,
G5,G6,G7,G8,G9)
2 区间 0.912 (G4,G5,G6,G7)vs(G2,G3),
(G1,G8,G9)
3 区间 0.988 (G2,G3) vs (G1,G8,G9)
4 本地 1.091 (G4) vs (G5,G6,G7)
5 本地 1.190 (G9) vs (G1,G8)
6 本地 1.294 (G2) vs (G3)
7 本地 1.372 (G4) vs (G5)
8 本地 1.407 (G6) vs (G7)
9 本地 1.728 (G1) vs (G8)
Tab.6 Modal analysis results of New England system
模式 PSS安装位置
(最大可控性)
广域输入信号
(最大可观性)
1 G9 ${I_{9 \text{-} 39}}/{P_{9 \text{-} 39}},{\theta _{1 \text{-} 2}}$
2 G7 ${I_{3 \text{-} 18}}/{P_{3 \text{-} 18}},{I_{15 \text{-} 16}}/{P_{15 \text{-} 16}}$
3 G3 ${I_{9 \text{-} 39}}/{P_{9 \text{-} 39}},{I_{4 \text{-} 5}}/{P_{4 \text{-} 5}}$
Tab.7 Wide-area input signal and PSS location
发电机 K T1/s T3/s
G3 14.975 0.391 0.253
G7 13.203 0.530 0.363
G9 20.323 0.169 0.054
Tab.8 Optimized wide-area PSS parameters (Scheme A)
Fig.10 Response curves of generator and tie-line power (Operation mode I′)
Fig.11 Response curves of generator and tie-line power (Operation mode II′)
Fig.12 Eigenvalue distribution of electromechanical mode under three operation modes
[1]   赵晋泉, 邓晖, 吴小辰, 等 基于广域响应的电力系统暂态稳定控制技术评述[J]. 电力系统保护与控制, 2016, 44 (5): 1- 9
ZHAO Jin-quan, DENG Hui, WU Xiao-chen, et al Review on power system transient stability control technologies based on PMU/WAMS[J]. Power System Protection and Control, 2016, 44 (5): 1- 9
[2]   陈恩泽, 刘涤尘, 廖清芬, 等 多重扰动下的跨区电网低频振荡研究[J]. 电工技术学报, 2014, 29 (2): 290- 296
CHEN En-ze, LIU Di-chen, LIAO Qing-fen, et al Research on low frequency oscillation of interconnected power grid based on multiple disturbances[J]. Transactions of China Electro-technical Society, 2014, 29 (2): 290- 296
doi: 10.3969/j.issn.1000-6753.2014.02.035
[3]   宋墩文, 杨学涛, 丁巧林, 等 大规模互联电网低频振荡分析与控制方法综述[J]. 电网技术, 2011, 35 (10): 22- 27
SONG Dun-wen, YANG Xue-tao, DING Qiao-lin, et al A survey on analysis on low frequency oscillation in large-scale interconnected power grid and its control measure[J]. Power System Technology, 2011, 35 (10): 22- 27
[4]   陈中, 胡吕龙 基于阻尼转矩分析法的多广域阻尼控制器多模态交互影响分析[J]. 电力自动化设备, 2012, 32 (11): 92- 96
CHEN Zhong, HU Lv-long Interaction of multiple wide-area damping controllers based on DTA method[J]. Electric Power Automation Equipment, 2012, 32 (11): 92- 96
[5]   马燕峰, 周一辰, 赵书强, 等 考虑交互作用的多阻尼控制器独立设计的控制环选择[J]. 电工技术学报, 2016, 31 (04): 136- 146
MA Yan-feng, ZHOU Yi-chen, ZHAO Shu-qiang, et al Control loops selection for independent design of multiple damping controllers with interactions considered[J]. Transactions of China Electrotechnical Society, 2016, 31 (04): 136- 146
doi: 10.3969/j.issn.1000-6753.2016.04.019
[6]   陶向宇, 刘增煌 多机电力系统广泛配置PSS的可行性研究[J]. 电网技术, 2008, 32 (22): 29- 34
TAO Xiang-yu, LIU Zeng-huang Study on the feasibility of wide usage of PSS in multi-machine power system[J]. Power System Technology, 2008, 32 (22): 29- 34
[7]   赵书强, 常鲜戎, 贺仁睦, 等 PSS控制过程中的借阻尼现象与负阻尼效应[J]. 中国电机工程学报, 2004, 24 (5): 11- 15
ZHAO Shu-qiang, CHANG Xian-rong, HE Ren-mu, et al Borrow damping phenomena and negative damping effect of PSS control[J]. Proceedings of the CSEE, 2004, 24 (5): 11- 15
[8]   ZHAO Y, YUAN Z, LU C, et al Improved model-free adaptive wide-area coordination damping controller for multiple-input-multiple-output power systems[J]. IET Generation, Transmission and Distribution, 2016, 10 (13): 3264- 3275
doi: 10.1049/iet-gtd.2016.0069
[9]   LI Y, CHRISTIAN R, SVEN R, et al Wide-area robust coordination approach of HVDC and FACTS controllers for damping multiple interarea oscillations[J]. IEEE Transactions on Power Delivery, 2012, 27 (3): 1096- 1105
doi: 10.1109/TPWRD.2012.2190830
[10]   马燕峰, 张佳怡 计及广域信号多时滞影响的电力系统附加鲁棒阻尼控制[J]. 电工技术学报, 2017, 32 (06): 58- 66
MA Yan-feng, ZHANG Jia-yi Additional robust damping control of wide-area power system with multiple time delays considered[J]. Transactions of China Electrotechnical Society, 2017, 32 (06): 58- 66
[11]   HASSAN L H, MOGHAVVEMI M, ALMURIB H A F, et al A coordinated design of PSSs and UPFC-based stabilizer using genetic algorithm[J]. IEEE Transactions on Industry Applications, 2014, 50 (5): 2957- 2966
doi: 10.1109/TIA.2014.2305797
[12]   YANG X S, HOSSEIN GANDOMI A Bat algorithm: a novel approach for global engineering optimization[J]. Engineering Computations, 2012, 29 (5): 464- 483
doi: 10.1108/02644401211235834
[13]   SHENG S Q, ZHANG J J Capacity configuration optimisation for stand-alone micro-grid based on an improved binary bat algorithm[J]. The Journal of Engineering, 2017, 2017 (13): 2083- 2087
doi: 10.1049/joe.2017.0696
[14]   KOMARASAMY G, WAHI A An optimized K-means clustering technique using bat algorithm[J]. European Journal of Scientific Research, 2012, 84 (2): 263- 273
[15]   张程, 金涛 考虑噪声的电力系统低频振荡辨识方法[J]. 华中科技大学学报: 自然科学版, 2017, 45 (4): 90- 96
ZHANG Cheng, JIN Tao Low frequency oscillation identification method of power system considering its noise[J]. Journal of Huazhong University of Science and Technology, 2017, 45 (4): 90- 96
[16]   马燕峰, 刘伟东, 赵书强 基于包络线拟合的低频振荡性质在线判别[J]. 电力系统自动化, 2014, 38 (23): 46- 53
MA Yan-feng, LIU Wei-dong, ZHAO Shu-qiang On-line identification of low-frequency oscillation properties based on envelope fitting[J]. Automation of Electric Power Systems, 2014, 38 (23): 46- 53
doi: 10.7500/AEPS20131022005
[1] LI Wen-Xi, LIN Cong-Jing, WANG Jing-Dai, et al. Optimization of grade transition for continuous propylene polymerization
process using continuous stir reactor in series technology
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(2): 326-331.