Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (9): 1711-1719    DOI: 10.3785/j.issn.1008-973X.2019.09.010
Civil and Architecture Engineering     
Fatigue damage calculation method of monopile supported offshore wind turbine
Jian-bin ZHAO1(),Yi-bo XI1,Zhen-yu WANG2,*()
1. School of Civil Engineering, Shenyang Jianzhu University, Shenyang 110168, China
2. College of Civil and architecture, Zhejiang University, Hangzhou 310058, China
Download: HTML     PDF(1215KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The applicability and influence of different calculation methods were evaluated, in order to improve the accuracy of the fatigue damage calculation of offshore wind turbine foundation. The fatigue evaluation of a monopile supported offshore wind turbine was studied. The full time domain dynamic analysis model and the frequency domain fatigue damage calculation process based on power spectral density function were established. The influence of aerodynamic damping, combined wind and wave loads and stress range probability distribution model on the fatigue damage were studied. Results show that the fatigue damage is easily affected by the aerodynamic damping, and the wind-induced fatigue damage is more sensitive to aerodynamic damping than the wave-induced fatigue damage. Since the combined wind and wave loads has great influence on the foundation fatigue damage, the result of simply superimposing wind-induced and wave-induced fatigue damage is less than the result of combined wind and wave loads. It is necessary to determine an appropriate stress range probability distribution model. The wind-induced and wave-induced fatigue damage calculated by Dirlik model and inverse fast Fourier transform (IFFT) in frequency domain method is respectively close to the results by time domain method, but the total fatigue damage of superimposing wind-induced and wave-induced fatigue damage is less than that of combining wind and wave loads by time domain method.



Key wordsmonopile supported offshore wind turbine      fatigue damage      dynamic analysis      frequency domain method      aerodynamic damping      stress range probability distribution model     
Received: 27 September 2018      Published: 12 September 2019
CLC:  TU 473.1  
  TV 34  
Corresponding Authors: Zhen-yu WANG     E-mail: cejbzhao@163.com;wzyu@zju.edu.cn
Cite this article:

Jian-bin ZHAO,Yi-bo XI,Zhen-yu WANG. Fatigue damage calculation method of monopile supported offshore wind turbine. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1711-1719.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.09.010     OR     http://www.zjujournals.com/eng/Y2019/V53/I9/1711


海上风机单桩基础疲劳损伤计算方法

为提高海上风机基础疲劳损伤计算的准确性,评价不同计算方法的适用性和影响,以海上风机单桩基础为例进行疲劳评价,建立全时域的动力分析模型和基于功率谱密度函数的频域疲劳损伤计算流程,研究气动阻尼比取值、风与波浪联合作用、应力幅概率分布模型对基础疲劳损伤的影响. 结果表明:基础疲劳损伤受气动阻尼比影响突出,风致疲劳损伤对气动阻尼比的敏感性大于浪致疲劳损伤;由于风与波浪联合作用对基础的疲劳损伤有较大影响,简单叠加风致疲劳损伤和浪致疲劳损伤得到的结果较风与波浪联合作用时偏小;确定合适的应力幅概率分布模型十分必要,频域法中采用Dirlik模型得到的风致疲劳损伤和采用快速傅里叶逆变换(IFFT)的浪致疲劳损伤分别与时域法的结果相近,但叠加的总疲劳损伤小于风与波浪联合作用时的总疲劳损伤.


关键词: 海上风机单桩基础,  疲劳损伤,  动力分析,  频域法,  气动阻尼比,  应力幅概率分布模型 
Fig.1 Offshore turbine dynamic analysis model
Fig.2 Flow chart of frequency domain method fatigue evaluation analysis
风况 Δu/(m·s?2 u/(m·s?2 P/% 海况 Hs/m T/s P/%
W1 2.5~4.0 3 10.52 S1 0.5 2 5.93
W2 4.0~6.0 5 20.11 S2 0.5 3 36.59
W3 6.0~8.0 7 21.94 S3 1.0 3 16.05
W4 8.0~10.0 9 18.42 S4 0.5 4 8.05
W5 10.0~12.0 11 12.28 S5 1.0 4 19.79
W6 12.0~14.0 13 6.59 S6 1.5 4 6.76
W7 14.0~20.0 16 4.13 S7 1.5 5 2.45
W8 <2.5 ? 5.93 S8 2.0 5 3.18
W9 >20.0 ? 0.08 S9 2.5 5 1.20
Tab.1 Division results of wind cases and sea cases
Fig.3 Occurrence probability of wind and sea combined cases
Fig.4 Comparison of time and frequency domain stress PSD
Fig.5 Influence of aerodynamic damping on fatigue damage in wind case IV
Fig.6 Influence of aerodynamic damping on fatigue damage in sea case IX
Fig.7 Influence of aerodynamic damping on fatigue damage in combined wind case IV and sea case IX
风况 Dwind K/% 海况 Dwave K/%
注:Dtotal=Dwind+Dwave=4.70×10?1
W1 3.80×10?6 0 S1 2.09×10?5 0.25
W2 4.87×10?4 0.11 S2 1.33×10?4 1.56
W3 7.89×10?3 1.71 S3 1.87×10?3 22.00
W4 3.87×10?2 8.39 S4 1.20×10?5 0.14
W5 9.03×10?2 19.59 S5 9.44×10?4 11.11
W6 1.37×10?1 29.72 S6 2.45×10?3 28.82
W7 1.87×10?1 40.56 S7 2.38×10?4 2.80
W8 0 0 S8 1.30×10?3 15.29
W9 0 0 S9 1.53×10?3 18.00
Dwind 4.61×10?1 100.00 Dwave 8.50×10?3 100.00
Tab.2 Foundation fatigue damage of each case with wind or wave loading alone
Fig.8 Foundation fatigue damage of each case with combined wind and wave loads
Fig.9 Fatigue damage under combination of sea case II and each wind case
Fig.10 Fatigue damage under combination of wind case VII and each sea case
计算方法 Dwind Dwave
时域方法 0.461 8.50×10?3
频域方法 IFFT方法 1.94 9.70×10?3
Dirlik模型 0.523 ?
BT模型 4.35 ?
Tunna模型 1.21 ?
Rayleigh模型 ? 0.461
Tab.3 Foundation fatigue damage with different calculation methods
[1]   WANG X, ZENG X, LI J, et al A review on recent advancements of substructures for offshore wind turbines[J]. Energy Conversion and Management, 2018, 158: 103- 119
doi: 10.1016/j.enconman.2017.12.061
[2]   PASSON P Damage equivalent wind-wave correlations on basis of damage contour lines for the fatigue design of offshore wind turbines[J]. Renewable Energy, 2015, 81: 723- 736
doi: 10.1016/j.renene.2015.03.070
[3]   ZIEGLER L, VOORMEEREN S, SCHAFHIRT S, et al Design clustering of offshore wind turbines using probabilistic fatigue load estimation[J]. Renewable Energy, 2016, 91: 425- 433
doi: 10.1016/j.renene.2016.01.033
[4]   DO T Q, LINDT J W V D, MAHMOUD H Fatigue life fragilities and performance-based design of wind turbine tower base connections[J]. Journal of Structural Engineering, 2015, 141 (7): 04014183
doi: 10.1061/(ASCE)ST.1943-541X.0001150
[5]   JIA J An efficient nonlinear dynamic approach for calculating wave induced fatigue damage of offshore structures and its industrial applications for lifetime extension[J]. Applied Ocean Research, 2008, 30 (3): 189- 198
doi: 10.1016/j.apor.2008.09.003
[6]   KVITTEM M I, MOAN T Time domain analysis procedures for fatigue assessment of a semi-submersible wind turbine[J]. Marine Structures, 2015, 40: 38- 59
doi: 10.1016/j.marstruc.2014.10.009
[7]   DU J, LI H, ZHANG M, et al A novel hybrid frequency-time domain method for the fatigue damage assessment of offshore structures[J]. Ocean Engineering, 2015, 98: 57- 65
doi: 10.1016/j.oceaneng.2015.02.004
[8]   MOHAMMADI S F, GALGOUL N S, STAROSSEK U, et al An efficient time domain fatigue analysis and its comparison to spectral fatigue assessment for an offshore jacket structure[J]. Marine Structures, 2016, 49: 97- 115
doi: 10.1016/j.marstruc.2016.05.003
[9]   TUNNA J M Fatigue life prediction for gaussian random loads at the design stage[J]. Fatigue and Fracture of Engineering Materials and Structures, 2010, 9 (3): 169- 184
[10]   BENASCIUTTI D, TOVO R Spectral methods for lifetime prediction under wide-band stationary random processes[J]. International Journal of Fatigue, 2005, 27 (8): 867- 877
doi: 10.1016/j.ijfatigue.2004.10.007
[11]   DIRLIK T. Application of computers in fatigue analysis [D]. Warwich: Warwich University, 1985: 129.
[12]   PARK J B, CHOUNG J, KIM K S A new fatigue prediction model for marine structures subject to wide band stress process[J]. Ocean Engineering, 2014, 76 (1): 144- 151
[13]   BENASCIUTTI D, TOVO R Comparison of spectral methods for fatigue analysis of broad-band Gaussian random processes[J]. Probabilistic Engineering Mechanics, 2006, 21 (4): 287- 299
doi: 10.1016/j.probengmech.2005.10.003
[14]   LOW Y M A method for accurate estimation of the fatigue damage induced by bimodal processes[J]. Probabilistic Engineering Mechanics, 2010, 25 (1): 75- 85
doi: 10.1016/j.probengmech.2009.08.001
[15]   JIAO G, MOAN T Probabilistic analysis of fatigue due to Gaussian load processes[J]. Probabilistic Engineering Mechanics, 1990, 5 (2): 76- 83
doi: 10.1016/0266-8920(90)90010-H
[16]   FU T T, CEBON D Predicting fatigue lives for bi-modal stress spectral densities[J]. International Journal of Fatigue, 2000, 22 (1): 11- 21
doi: 10.1016/S0142-1123(99)00113-9
[17]   GAO S, ZHENG X Y An improved spectral discretization method for fatigue damage assessment of bimodal Gaussian processes[J]. International Journal of Fatigue, 2019, 119: 268- 280
doi: 10.1016/j.ijfatigue.2018.09.027
[18]   DNV GL. Fatigue design of offshore steel structures: DNVGL-RP-C203[S]. Norway: DNV GL, 2016: 178.
[19]   HUANG W, MOAN T. Fatigue under combined high and low frequency loads [C]// 25th International Conference on Offshore Mechanics and Arctic Engineering. Hamburg: OMAE, 2006: 149-156.
[20]   MA Y L, HAN C H, QU X Q Fatigue assessment method of marine structures subjected to two Gaussian random loads[J]. Ocean Engineering, 2018, 165: 107- 122
doi: 10.1016/j.oceaneng.2018.07.033
[21]   YAMASHITA A, SEKITA K. Analysis of the fatigue damage on the offshore wind turbines exposed to wind and wave loads within the typhoon area [C] // ASME 2004, International Conference on Offshore Mechanics and Arctic Engineering. Vancouver: ASME, 2004: 284-291.
[22]   DONG W, MOAN T, GAO Z Long-term fatigue analysis of multi-planar tubular joints for jacket-type offshore wind turbine in time domain[J]. Engineering Structures, 2011, 33 (6): 2002- 2014
doi: 10.1016/j.engstruct.2011.02.037
[23]   YETER B, GARBATOV Y, SOARES C G Fatigue damage assessment of fixed offshore wind turbine tripod support structures[J]. Engineering Structures, 2015, 101: 518- 528
doi: 10.1016/j.engstruct.2015.07.038
[24]   TEMPEL J. Design of support structures for offshore wind turbines [D]. Delft: Delft University of Technology, 2006: 162.
[25]   ZIEGLER L, VOORMEEREN S, SCHAFHIRT S, et al Sensitivity of wave fatigue loads on offshore wind turbines under varying site conditions[J]. Energy Procedia, 2015, 80: 193- 200
doi: 10.1016/j.egypro.2015.11.422
[26]   MARINO E, GIUSTI A, MANUEL L Offshore wind turbine fatigue loads: the influence of alternative wave modeling for different turbulent and mean winds[J]. Renewable Energy, 2017, 102: 157- 169
doi: 10.1016/j.renene.2016.10.023
[27]   REZAEI R, FROMME P, DUFFOUR P Fatigue life sensitivity of monopile-supported offshore wind turbines to damping[J]. Renewable Energy, 2018, 123: 450- 459
doi: 10.1016/j.renene.2018.02.086
[28]   VALAMANESH V, MYERS A T Aerodynamic damping and seismic response of horizontal axis wind turbine towers[J]. Journal of Structural Engineering, 2014, 140 (11): 04014090
doi: 10.1061/(ASCE)ST.1943-541X.0001018
[29]   DAMGAARD M, ANDERSEN J K F, IBSEN L B, et al. Natural frequency and damping estimation of an offshore wind turbine structure [C] // Twenty-second International Offshore and Polar Engineering Conference. Rhodes: ISOPE, 2012: 300-307.
[30]   CARSWELL W, JOHANSSON J, L?VHOLT F, et al Foundation damping and the dynamics of offshore wind turbine monopiles[J]. Renewable Energy, 2015, 80: 724- 736
doi: 10.1016/j.renene.2015.02.058
[31]   DAMGAARD M, IBSEN L B, ANDERSEN L V, et al Cross-wind modal properties of offshore wind turbines identified by full scale testing[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2013, 116 (5): 94- 108
[32]   IEC.Wind turbines-Part 1: Design requirements: IEC 61400-1 [S]. Switzerland: International Electrotechnical Commission, 2005:66.
[33]   HANSEN M O L. 风力机空气动力学[M]. 北京: 中国电力出版社, 2009: 39-46.
[1] Ren-qiang XI,Xiu-li DU,Pi-guang WANG,Cheng-shun XU,Kun XU. Integrated seismic response of monopile supported offshore wind turbines[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 757-766.
[2] Han-qing ZHUGE,Xu XIE,Yan-hua LIAO,Zhan-zhan TANG. Effect of transverse earthquake action on development of seismic damage of steel arch bridges[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 702-712.
[3] Shuo CONG,Jia-ming CHEN,Jing-cheng CAI,Rui-song SUN,Jian-hua DONG,Fei GUO. Thermodynamic analysis and experimental study on humidification-dehumidification desalination system[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 684-691.
[4] ZHANG Jun, JIN Wei-liang, MAO Jiang-hong. Experimental study on steel bars' fatigue damage based on piezomagnetism[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(9): 1681-1687.
[5] JIN Wei liang, ZHOU Zheng dong, ZHANG Jun,MAO Jiang hong, CUI Lei, PAN Chong gen. Experimental research on fatigue properties of corroded steel bars based on dynamic piezomagnetism[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(2): 225-230.
[6] LIU Yang, ZHANG Hai ping, DENG Yang, Li Ming. Fatigue damage analysis on simple supported bridge under overloading[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(11): 2172-2178.
[7] TONG Gen-shu, YE Yun, ZHANG Lei. Comparative study on elastic-plastic response spectra of three idealized hysteretic models[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(4): 693-703.
[8] SHEN Guo-hui, WANG Ning-bo, REN Tao, SHI Zhu-yuan, LOU Wen-juan. Comparison of time domain and frequency domain methods to
obtain wind-induced responses of civil engineering structures
[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(9): 1573-1578.
[9] SUN Xiao-yan, XU Chong, WANG Hai-long, CHU Ji-fang. Overloading simulation fatigue experiment of bridge member
with and without CFRP reinforcement
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(9): 1585-1591.
[10] SHU E-Xin, ZHANG Bin, DIAO Jun, DENG. Movement analysis of rice seed embryo ordering in vibration seed-metering device[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(5): 902-906.