Fatigue damage calculation method of monopile supported offshore wind turbine
Jian-bin ZHAO1(),Yi-bo XI1,Zhen-yu WANG2,*()
1. School of Civil Engineering, Shenyang Jianzhu University, Shenyang 110168, China 2. College of Civil and architecture, Zhejiang University, Hangzhou 310058, China
The applicability and influence of different calculation methods were evaluated, in order to improve the accuracy of the fatigue damage calculation of offshore wind turbine foundation. The fatigue evaluation of a monopile supported offshore wind turbine was studied. The full time domain dynamic analysis model and the frequency domain fatigue damage calculation process based on power spectral density function were established. The influence of aerodynamic damping, combined wind and wave loads and stress range probability distribution model on the fatigue damage were studied. Results show that the fatigue damage is easily affected by the aerodynamic damping, and the wind-induced fatigue damage is more sensitive to aerodynamic damping than the wave-induced fatigue damage. Since the combined wind and wave loads has great influence on the foundation fatigue damage, the result of simply superimposing wind-induced and wave-induced fatigue damage is less than the result of combined wind and wave loads. It is necessary to determine an appropriate stress range probability distribution model. The wind-induced and wave-induced fatigue damage calculated by Dirlik model and inverse fast Fourier transform (IFFT) in frequency domain method is respectively close to the results by time domain method, but the total fatigue damage of superimposing wind-induced and wave-induced fatigue damage is less than that of combining wind and wave loads by time domain method.
Fig.2Flow chart of frequency domain method fatigue evaluation analysis
风况
Δu/(m·s?2)
u/(m·s?2)
P/%
海况
Hs/m
T/s
P/%
W1
2.5~4.0
3
10.52
S1
0.5
2
5.93
W2
4.0~6.0
5
20.11
S2
0.5
3
36.59
W3
6.0~8.0
7
21.94
S3
1.0
3
16.05
W4
8.0~10.0
9
18.42
S4
0.5
4
8.05
W5
10.0~12.0
11
12.28
S5
1.0
4
19.79
W6
12.0~14.0
13
6.59
S6
1.5
4
6.76
W7
14.0~20.0
16
4.13
S7
1.5
5
2.45
W8
<2.5
?
5.93
S8
2.0
5
3.18
W9
>20.0
?
0.08
S9
2.5
5
1.20
Tab.1Division results of wind cases and sea cases
Fig.3Occurrence probability of wind and sea combined cases
Fig.4Comparison of time and frequency domain stress PSD
Fig.5Influence of aerodynamic damping on fatigue damage in wind case IV
Fig.6Influence of aerodynamic damping on fatigue damage in sea case IX
Fig.7Influence of aerodynamic damping on fatigue damage in combined wind case IV and sea case IX
风况
Dwind
K/%
海况
Dwave
K/%
注:Dtotal=Dwind+Dwave=4.70×10?1
W1
3.80×10?6
0
S1
2.09×10?5
0.25
W2
4.87×10?4
0.11
S2
1.33×10?4
1.56
W3
7.89×10?3
1.71
S3
1.87×10?3
22.00
W4
3.87×10?2
8.39
S4
1.20×10?5
0.14
W5
9.03×10?2
19.59
S5
9.44×10?4
11.11
W6
1.37×10?1
29.72
S6
2.45×10?3
28.82
W7
1.87×10?1
40.56
S7
2.38×10?4
2.80
W8
0
0
S8
1.30×10?3
15.29
W9
0
0
S9
1.53×10?3
18.00
Dwind
4.61×10?1
100.00
Dwave
8.50×10?3
100.00
Tab.2Foundation fatigue damage of each case with wind or wave loading alone
Fig.8Foundation fatigue damage of each case with combined wind and wave loads
Fig.9Fatigue damage under combination of sea case II and each wind case
Fig.10Fatigue damage under combination of wind case VII and each sea case
计算方法
Dwind
Dwave
时域方法
0.461
8.50×10?3
频域方法
IFFT方法
1.94
9.70×10?3
Dirlik模型
0.523
?
BT模型
4.35
?
Tunna模型
1.21
?
Rayleigh模型
?
0.461
Tab.3Foundation fatigue damage with different calculation methods
[1]
WANG X, ZENG X, LI J, et al A review on recent advancements of substructures for offshore wind turbines[J]. Energy Conversion and Management, 2018, 158: 103- 119
doi: 10.1016/j.enconman.2017.12.061
[2]
PASSON P Damage equivalent wind-wave correlations on basis of damage contour lines for the fatigue design of offshore wind turbines[J]. Renewable Energy, 2015, 81: 723- 736
doi: 10.1016/j.renene.2015.03.070
[3]
ZIEGLER L, VOORMEEREN S, SCHAFHIRT S, et al Design clustering of offshore wind turbines using probabilistic fatigue load estimation[J]. Renewable Energy, 2016, 91: 425- 433
doi: 10.1016/j.renene.2016.01.033
[4]
DO T Q, LINDT J W V D, MAHMOUD H Fatigue life fragilities and performance-based design of wind turbine tower base connections[J]. Journal of Structural Engineering, 2015, 141 (7): 04014183
doi: 10.1061/(ASCE)ST.1943-541X.0001150
[5]
JIA J An efficient nonlinear dynamic approach for calculating wave induced fatigue damage of offshore structures and its industrial applications for lifetime extension[J]. Applied Ocean Research, 2008, 30 (3): 189- 198
doi: 10.1016/j.apor.2008.09.003
[6]
KVITTEM M I, MOAN T Time domain analysis procedures for fatigue assessment of a semi-submersible wind turbine[J]. Marine Structures, 2015, 40: 38- 59
doi: 10.1016/j.marstruc.2014.10.009
[7]
DU J, LI H, ZHANG M, et al A novel hybrid frequency-time domain method for the fatigue damage assessment of offshore structures[J]. Ocean Engineering, 2015, 98: 57- 65
doi: 10.1016/j.oceaneng.2015.02.004
[8]
MOHAMMADI S F, GALGOUL N S, STAROSSEK U, et al An efficient time domain fatigue analysis and its comparison to spectral fatigue assessment for an offshore jacket structure[J]. Marine Structures, 2016, 49: 97- 115
doi: 10.1016/j.marstruc.2016.05.003
[9]
TUNNA J M Fatigue life prediction for gaussian random loads at the design stage[J]. Fatigue and Fracture of Engineering Materials and Structures, 2010, 9 (3): 169- 184
[10]
BENASCIUTTI D, TOVO R Spectral methods for lifetime prediction under wide-band stationary random processes[J]. International Journal of Fatigue, 2005, 27 (8): 867- 877
doi: 10.1016/j.ijfatigue.2004.10.007
[11]
DIRLIK T. Application of computers in fatigue analysis [D]. Warwich: Warwich University, 1985: 129.
[12]
PARK J B, CHOUNG J, KIM K S A new fatigue prediction model for marine structures subject to wide band stress process[J]. Ocean Engineering, 2014, 76 (1): 144- 151
[13]
BENASCIUTTI D, TOVO R Comparison of spectral methods for fatigue analysis of broad-band Gaussian random processes[J]. Probabilistic Engineering Mechanics, 2006, 21 (4): 287- 299
doi: 10.1016/j.probengmech.2005.10.003
[14]
LOW Y M A method for accurate estimation of the fatigue damage induced by bimodal processes[J]. Probabilistic Engineering Mechanics, 2010, 25 (1): 75- 85
doi: 10.1016/j.probengmech.2009.08.001
[15]
JIAO G, MOAN T Probabilistic analysis of fatigue due to Gaussian load processes[J]. Probabilistic Engineering Mechanics, 1990, 5 (2): 76- 83
doi: 10.1016/0266-8920(90)90010-H
[16]
FU T T, CEBON D Predicting fatigue lives for bi-modal stress spectral densities[J]. International Journal of Fatigue, 2000, 22 (1): 11- 21
doi: 10.1016/S0142-1123(99)00113-9
[17]
GAO S, ZHENG X Y An improved spectral discretization method for fatigue damage assessment of bimodal Gaussian processes[J]. International Journal of Fatigue, 2019, 119: 268- 280
doi: 10.1016/j.ijfatigue.2018.09.027
HUANG W, MOAN T. Fatigue under combined high and low frequency loads [C]// 25th International Conference on Offshore Mechanics and Arctic Engineering. Hamburg: OMAE, 2006: 149-156.
[20]
MA Y L, HAN C H, QU X Q Fatigue assessment method of marine structures subjected to two Gaussian random loads[J]. Ocean Engineering, 2018, 165: 107- 122
doi: 10.1016/j.oceaneng.2018.07.033
[21]
YAMASHITA A, SEKITA K. Analysis of the fatigue damage on the offshore wind turbines exposed to wind and wave loads within the typhoon area [C] // ASME 2004, International Conference on Offshore Mechanics and Arctic Engineering. Vancouver: ASME, 2004: 284-291.
[22]
DONG W, MOAN T, GAO Z Long-term fatigue analysis of multi-planar tubular joints for jacket-type offshore wind turbine in time domain[J]. Engineering Structures, 2011, 33 (6): 2002- 2014
doi: 10.1016/j.engstruct.2011.02.037
[23]
YETER B, GARBATOV Y, SOARES C G Fatigue damage assessment of fixed offshore wind turbine tripod support structures[J]. Engineering Structures, 2015, 101: 518- 528
doi: 10.1016/j.engstruct.2015.07.038
[24]
TEMPEL J. Design of support structures for offshore wind turbines [D]. Delft: Delft University of Technology, 2006: 162.
[25]
ZIEGLER L, VOORMEEREN S, SCHAFHIRT S, et al Sensitivity of wave fatigue loads on offshore wind turbines under varying site conditions[J]. Energy Procedia, 2015, 80: 193- 200
doi: 10.1016/j.egypro.2015.11.422
[26]
MARINO E, GIUSTI A, MANUEL L Offshore wind turbine fatigue loads: the influence of alternative wave modeling for different turbulent and mean winds[J]. Renewable Energy, 2017, 102: 157- 169
doi: 10.1016/j.renene.2016.10.023
[27]
REZAEI R, FROMME P, DUFFOUR P Fatigue life sensitivity of monopile-supported offshore wind turbines to damping[J]. Renewable Energy, 2018, 123: 450- 459
doi: 10.1016/j.renene.2018.02.086
[28]
VALAMANESH V, MYERS A T Aerodynamic damping and seismic response of horizontal axis wind turbine towers[J]. Journal of Structural Engineering, 2014, 140 (11): 04014090
doi: 10.1061/(ASCE)ST.1943-541X.0001018
[29]
DAMGAARD M, ANDERSEN J K F, IBSEN L B, et al. Natural frequency and damping estimation of an offshore wind turbine structure [C] // Twenty-second International Offshore and Polar Engineering Conference. Rhodes: ISOPE, 2012: 300-307.
[30]
CARSWELL W, JOHANSSON J, L?VHOLT F, et al Foundation damping and the dynamics of offshore wind turbine monopiles[J]. Renewable Energy, 2015, 80: 724- 736
doi: 10.1016/j.renene.2015.02.058
[31]
DAMGAARD M, IBSEN L B, ANDERSEN L V, et al Cross-wind modal properties of offshore wind turbines identified by full scale testing[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2013, 116 (5): 94- 108