Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (3): 492-502    DOI: 10.3785/j.issn.1008-973X.2019.03.010
Civil Engineering     
Seismic performance and parametric influences of damping-coupled wall system
Shuai LIU1(),Chao PAN2,*(),Zhi-guang ZHOU3
1. School of Civil Engineering and Architecture, Zhejiang Sci-tech University, Hangzhou 310018, China
2. School of Civil Engineering, Yantai University, Yantai 264005, China
3. Research Institute of Structural Engineering and Disaster Reduction, Tongji University, Shanghai 200092, China
Download: HTML     PDF(1789KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The wall piers were coupled by vertical metallic yielding dampers in the preset slits of coupling beams in the damping-coupled wall structure system, and the system’s basic structural forms and theory were as follows: cut off the coupling beams at their mid-spans and then connect the separated wall piers by vertically installed metallic yielding dampers. Therefore, the relative vertical dislocations between adjacent wall piers could motivate the dampers to dissipate seismic energy during earthquakes and thus the wall piers could be protected from severe damage. The nonlinear seismic responses of the damped wall were evaluated by modeling wall piers and coupling beams with macro beam elements, i.e., the fiber-section model with shear behavior, and dampers with link elements; the dimensionless parameters of dampers were chosen as key variables to execute seismic analysis and parametric studies. A series of static and dynamic nonlinear analysis cases were performed with regard to dimensionless parameters variation, and results indicates that the seismic responses of the damping-coupled wall can be well controlled with less cracks and damage compared with the conventional wall with a proper set of damping parameters. In brief, the proposed damping-coupled wall provides better seismic performance. Besides, the intensity, spectrum characteristics of seismic excitations and the distribution modes of dampers can both exert some influences on the seismic performance of a damping-coupled wall. Based on the analytical results, some recommendations are provided for the design of a damping-coupled wall.



Key wordsseismic response mitigation      damping-coupled wall      coupling beam      metallic yielding damper      properties of seismic excitations     
Received: 25 February 2018      Published: 04 March 2019
CLC:  TU 352  
Corresponding Authors: Chao PAN     E-mail: sliu_2008@163.com;panchao@ytu.edu.cn
Cite this article:

Shuai LIU,Chao PAN,Zhi-guang ZHOU. Seismic performance and parametric influences of damping-coupled wall system. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 492-502.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.03.010     OR     http://www.zjujournals.com/eng/Y2019/V53/I3/492


耗能联肢墙体系的减震性能及参数影响

连梁内设置竖向变形阻尼器的耗能联肢墙体系的基本构造形式及原理如下:将联肢墙连梁在跨中位置处断开,用竖向放置的金属屈服型阻尼器连接两侧墙肢,在地震作用下两侧墙肢的竖向变形差使阻尼器发生变形,进而耗散地震能量,减少墙体的损伤. 基于宏观杆系有限元模型(考虑剪切的纤维截面)对耗能联肢墙体系进行非线性静、动力抗震分析,并以无量纲阻尼器参数为关键变量进行参数影响研究. 多个不同的阻尼器参数组合工况的分析及对比结果表明:当阻尼器参数设置合理时,耗能联肢墙的延性较常规联肢墙有所提高,地震响应明显降低,裂缝较少且分布均匀,具有良好的抗震性能和减震效果;地震动强度、地震动频谱特性及阻尼器参数的分布模式对体系的减震效果有一定影响. 根据分析结果给出设置连梁耗能联肢墙体系参数设计的相关建议.


关键词: 减震,  耗能联肢墙,  连梁,  金属屈服型阻尼器,  地震动特性 
Fig.1 Classification of damping-coupled shear wall system
Fig.2 Damping-coupled wall system with vertically installed metallic dampers in coupling beams
Fig.3 Analysis model of coupled shear wall
Fig.4 Program Interface of SAP2OS
Fig.5 Analysis results of monotonic static loading
Fig.6 Influences on structural responses due to variation of dampers’ parameters
Fig.7 Contour of synthetical damping evaluation index
Fig.8 Damping effects of damping-coupled wall with parameters within “optimal performance region”
Fig.9 Crack pattern of conventional wall and damping wall
Fig.10 Seismic performance of damping-coupled wall under various earthquake levels
Fig.11 Time-history curve and response spectrum of artificial ground motions
Fig.12 Time-history curve and response spectrum of artificial ground motions
模式 PGA=70 gal PGA=200 gal PGA=400 gal
Vs/
kN
MOT/
(kN·m)
Vs/
kN
MOT/
(kN·m)
Vs/
kN
MOT /
(kN·m)
1 678.05 11 820.48 1 021.41 16 902.99 1 678.91 22 861.01
2 657.74 12 076.26 1 029.07 17 685.39 1 714.59 23 684.04
3 750.21 12 523.13 1 027.03 16 974.46 1 702.35 22 604.13
4 690.13 12 342.54 1 031.41 17 867.38 1 701.30 23 968.66
Tab.1 Base-shear and overturning-moment responses of damping-coupled walls with different parameter distribution modes
Fig.13 Story drift responses of damping-coupled walls with different parameter distribution modes
[1]   吕西林, 孟良 一种新型抗震耗能剪力墙结构: 结构的抗震性能研究[J]. 世界地震工程, 1995, (2): 22- 26
LU Xi-lin, MENG Liang Seismic behavior of a new highrise shear wall with seismic energy dissipation mechanism[J]. World Information on Earthquake Engineering, 1995, (2): 22- 26
[2]   滕军, 马伯涛, 周正根, 等 提高连肢墙抗震性能的连梁耗能构件关键技术[J]. 工程抗震与加固改造, 2007, 29 (5): 1- 6
TENG Jun, MA Bo-tao, ZHOU Zheng-gen, et al Key technique of energy dissipating damper on coupling beam to improve eismic-resistance performance of coupling shear wall structures[J]. Earthquake Resistant Engineering and Retrofitting, 2007, 29 (5): 1- 6
[3]   吕西林, 陈云, 蒋欢军 带可更换连梁的双肢剪力墙抗震性能试验研究[J]. 同济大学学报: 自然科学版, 2014, 42 (2): 175- 182
LU Xi-lin, CHEN Yun, JIANG Huan-jun Experimental study of seismic performance of coupled shear wall structure with replaceable coupling beams[J]. Journal of Tongji University: Natural Science, 2014, 42 (2): 175- 182
[4]   邓付元, 王涛, 施唯. 带阻尼器消能连梁抗震性能试验研究[J]. 土木工程学报, 2016, 49(增1): 96–100.
DENG Fu-yuan, WANG Tao, SHI Wei. Cyclic test on seismic behavior of energy-dissipative coupling beams with dampers[J]. China Civil Engineering Journal, 2016, 49(Suppl.1): 96–100.
[5]   王玉璋, 潘鹏, 邓开来, 等 高阻尼黏弹性橡胶连梁阻尼器力学性能试验研究[J]. 建筑结构学报, 2017, 38 (3): 158- 163
WANG Yu-zhang, PAN Peng, DENG Kai-lai, et al Experimental study on high-damping viscoelastic rubber coupling beam damper[J]. Journal of Building Structures, 2017, 38 (3): 158- 163
[6]   曲哲, 和田章, 叶列平 摇摆墙在框架结构抗震加固中的应用[J]. 建筑结构学报, 2011, 32 (9): 11- 19
QU Zhe, AKIRA Wada, YE Lie-ping Seismic retrofit of frame structures using rocking wall system[J]. Journal of Building Structures, 2011, 32 (9): 11- 19
[7]   吴守君, 潘鹏, 张鑫 框架-摇摆墙结构受力特点分析及其在抗震加固中的应用[J]. 工程力学, 2016, 33 (6): 54- 60
WU Shou-jun, PAN Peng, ZHANG Xin Characteristics of frame rocking wall structure and its application in aseismic retrofit[J]. Engineering Mechanics, 2016, 33 (6): 54- 60
[8]   潘超, 翁大根 耗能剪力墙结构体系研究进展[J]. 结构工程师, 2011, 27 (2): 160- 168
PAN Chao, WENG Da-gen State-of-the-art of shear wall systems with energy dissipation mechanism[J]. Structural Engineers, 2011, 27 (2): 160- 168
[9]   潘超, 翁大根 连梁内设置竖向变形阻尼器的耗能剪力墙体系减震分析与设计[J]. 建筑结构学报, 2012, 33 (10): 39- 46
PAN Chao, WENG Da-gen Seismic analysis and design of damping controlled coupled shear wall with vertical dampers in coupling beams[J]. Journal of Building Structures, 2012, 33 (10): 39- 46
[10]   潘超, 张瑞甫, 罗浩, 等 金属阻尼器消能减震体系的等阻尼比设计方法[J]. 建筑结构学报, 2018, 39 (3): 39- 47
PAN Chao, ZHANG Rui-fu, LUO Hao, et al Constant damping ratio design method for damping controlled structures with metallic yielding dampers[J]. Journal of Building Structures, 2018, 39 (3): 39- 47
[11]   TSAI K C, EERI M, CHEN H W, et al Design of steel triangular plate energy absorbers for seismic-resistant construction[J]. Earthquake Spectra, 1993, 9 (3): 505- 528
[12]   HARRIES K A, MOULTON J D, CLEMSON R L Parametric study of coupled wall behavior-implications for the design of coupling beams[J]. Journal of Structural Engineering, 2004, 130 (3): 480- 488
[13]   PAN C, ZHANG R F, LOU H, et al Simplified variational iteration method for solving ordinary differential equations and eigenvalue problems[J]. Advances in Mechanical Engineering, 2016, 8 (11): 1- 13
[14]   MAZZONI S, MCKENNA F, SCOTT M H, et al. Open system for earthquake engineering simulation user command-language manual [Z]. Berkeley: University of California, 2000.
[15]   吕西林, 卢文生 纤维墙元模型在剪力墙结构非线性分析中的应用[J]. 力学季刊, 2005, 26 (1): 72- 80
LU Xi-lin, LU Wen-sheng Application of fiber wall element model in nonlinear analysis of shear wall structures[J]. Chinese Quarterly of Mechanics, 2005, 26 (1): 72- 80
[16]   齐虎, 孙景江, 林淋 OPENSEES中纤维模型的研究[J]. 世界地震工程, 2007, 23 (4): 48- 54
QI Hu, SUN Jing-jiang, LIN Lin Research on fiber model of OPENSEES[J]. World Earthquake 0ngineering, 2007, 23 (4): 48- 54
[17]   杨红, 张睿, 臧登科, 等 纤维模型中非线性剪切效应的模拟方法及校核[J]. 四川大学学报: 工程科学版, 2011, 43 (1): 8- 16
YANG Hong, ZHANG Rui, ZANG Deng-ke, et al Fiber model based nonlinear shear effect modeling method and its calibration[J]. Journal of Sichuan University: Engineering Science Edition, 2011, 43 (1): 8- 16
[18]   潘超, 张瑞甫. EQSignal: 地震波处理与生成工具[CP/OL].(2016-08-20)[2018-02-25].www.eqsignal.com.
[19]   PAN C, ZHANG R, LUO H, et al Target-based algorithm for baseline correction of inconsistent vibration signals[J]. Journal of Vibration and Control, 2018, 24 (12): 2562- 2575
[20]   刘帅, 潘超, 周志光 对人造地震动反应谱求解及拟合的几个相关问题探讨[J]. 地震学报, 2018, 40 (4): 122- 133
LIU Shuai, PAN Chao, ZHOU Zhi-guang Discussions on the response spectral solution and fitting of spectrum-compatible artificial seismic waves[J]. Acta Seismologica Sinica, 2018, 40 (4): 122- 133
[1] Wei WANG,Shang-xin GAO,Ai-qun LI,Xing-xing WANG. Seismic responses of disc spring isolated-single degree of freedom system based on asymmetric model[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1095-1105.
[2] ZHONG Zhen-yu, LOU Wen-juan. Vibration reduction of high-rise buildings with converted TLCD acted by wind load[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(6): 1081-1087.
[3] GONG Shun-feng, XIA Qian, JIN Wei-liang. Investigation on damage mechanism of RC
column under close-in explosion
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(8): 1405-1410.
[4] ZHANG Yong-le, JIANG Jian-qun, LIU Jia-jin, WANG Zhen-yu. Seismic damage assessment of reinforced concrete structure and
its seismic design
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(7): 1294-1300.
[5] XIAO Na, RONG Li, DONG Dan-Lin. Optimal placements of  actuators in vibration active control for
doublelayer spherical grid shell structures
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(5): 942-949.