Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (4): 867-878    DOI: 10.3785/j.issn.1008-973X.2024.04.022
    
Transient stability analysis of direct-driven wind turbines based on self-synchronous control
Zijun WANG1(),Kehao ZHUANG2,Huanhai XIN1,2,*(),Dawei SUN3,Linlin WU3,Xiao WANG3
1. Polytechnic Institute, Zhejiang University, Hangzhou 310015, China
2. College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
3. North China Electric Power Research Institute Limited Company, Beijing 100045, China
Download: HTML     PDF(2209KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Large-scale integration of wind turbines results in the reduction of frequency modulation capability and weakens the power grid strength. The self-synchronous control adopted by direct-driven wind turbines (WTs) can effectively improve the small disturbance stability of the unit and its ability to support the power grid. However, self-synchronous control also brings complex transient stability issues. The WTs transient models were established respectively aiming at two typical control structures (the power self-synchronous and the DC voltage self-synchronous), and the effects of machine-side dynamics and DC capacitance dynamics on the transient characteristics were revealed. Firstly, the synchronous instability risk of direct-driven wind turbines based on power self-synchronous control under frequency drop was analyzed, and results showed that the stability margin under voltage drop would be reduced by the machine-side dynamics. As for the direct-driven wind turbines based on DC voltage self-synchronous control, the risk of DC voltage collapse instability caused by DC capacitance dynamic under transient was revealed. Then, the transient characteristic differences between converter and WTs were summarized and compared, and the transient control design concepts of WTs were discussed. Finally, the time-domain simulations based on Matlab/Simulink were given to verify the accuracy of the theoretical analysis and the effectiveness of the control.



Key wordsself-synchronous control      direct-driven wind turbines      transient stability      machine-side dynamics      DC capacitance dynamic      control design     
Received: 14 June 2023      Published: 27 March 2024
CLC:  TP 393  
Fund:  华北电力科学研究院项目(KJZ2021058).
Corresponding Authors: Huanhai XIN     E-mail: wangzj16@zju.edu.cn;xinhh@zju.edu.cn
Cite this article:

Zijun WANG,Kehao ZHUANG,Huanhai XIN,Dawei SUN,Linlin WU,Xiao WANG. Transient stability analysis of direct-driven wind turbines based on self-synchronous control. Journal of ZheJiang University (Engineering Science), 2024, 58(4): 867-878.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.04.022     OR     https://www.zjujournals.com/eng/Y2024/V58/I4/867


自同步型直驱风电机组暂态稳定分析

随着大规模风电的接入,电网面临系统变弱及调频能力变差的问题. 直驱风电机组采用自同步控制,在有效提升设备自身的小扰动稳定性和对电网的支撑能力的同时也带来了复杂的暂态稳定问题. 为此,针对2种典型的控制结构(功率自同步和直流电压自同步)分别建立风机系统暂态模型,揭示机侧动态及直流电容动态对暂态特性的影响. 针对功率自同步型风电机组,分析频率跌落下风机系统的同步失稳风险;结果表明,机侧动态会降低风机系统在电压跌落下的稳定裕度. 针对直流电压自同步型风电机组,揭示暂态下直流电容动态导致的直流电压崩溃失稳风险. 总结对比储能和风电机组的暂态特性差异,讨论直驱风电机组的暂态控制设计思路. 基于Matlab/Simulink的时域仿真模型验证理论分析的正确性及控制的有效性.


关键词: 自同步控制,  直驱风电机组,  暂态稳定,  机侧动态,  直流电容动态,  控制设计 
Fig.1 Control structure of direct-driven wind turbines based on self-synchronous control
Fig.2 Equipment interaction dynamics
Fig.3 Transient response of wind turbines under frequency deviations
Fig.4 Virtual power angle curve of direct-driven wind turbines based on power self-synchronous control
Fig.5 Virtual power angle curve of direct-driven wind turbines based on DC voltage self-synchronous control
Fig.6 Phase diagram of wind turbines under voltage drop
设备类型动态影响暂态特性
机侧直流电压频率跌落电压轻度跌落电压严重跌落
虚拟同步储能无影响直流电压恒定储能支撑电网虚拟功角减小,进入不期望
平衡点
虚拟功角增大,存在越过不稳定平衡点的失稳风险
功率自同步型直驱
风电机组
机侧与网侧
动态耦合强
直流电压近似
恒定
风机失去平衡点
机侧转子失速切机
机侧动态→减速面积增大→
进入平衡点时间增加
机侧动态→加速面积增大减速面积减小→增加失稳风险
直流电压自同步型
直驱风电机组
机侧与网侧
动态耦合弱
直流电压与网
侧动态耦合
无转子失速风险直流电容释放能量→存在直
流电压崩溃失稳风险
直流电压动态→加速面积增大减速面积减小→增加失稳风险
Tab.1 Comparison of transient characteristics between converter and wind turbines
风机类型网侧控制JgDgPreff(VDC)
功率自同步虚拟同步机JDPM0
下垂控制01/ KpPM0
直流电压自同步直流自同步$ K_{\text{J}}^{{\text{eq}}} $$ K_{\text{D}}^{{\text{eq}}} $Ps$ K_{\text{T}}^{{\text{eq}}}(V_{{\text{DC}}}^{\text{2}} - V{_{{\text{DC}}}^{{\text{ref}}\;2}}) $
惯性同步CDC VDC00Ps0
Tab.2 Parameters of equivalent dynamics on grid side
Fig.7 Equivalent dynamic of grid side and transient control examples
Fig.8 Time domain simulation waveform of wind turbines under frequency drop
Fig.9 Time domain simulation waveform of direct-driven wind turbines based on power self-synchronous control (SCR=5)
SCRUtcut,1tcut,2
50.30.1840.207
50.20.1480.174
20.30.1520.168
20.20.1250.137
Tab.3 System limit fault removal time
Fig.10 Time domain simulation waveform of direct-driven wind turbines based on DC voltage self-synchronous control (SCR=5)
Fig.11 Time domain simulation waveform under voltage drop(SCR=2)
[1]   刘中建, 周明, 李昭辉, 等 高比例新能源电力系统的惯量控制技术与惯量需求评估综述[J]. 电力自动化设备, 2021, 41 (12): 1- 11
LIU Zhongjian, ZHOU Ming, LI Zhaohui, et al Review of inertia control technology and requirement evaluation inrenewable-dominant power system[J]. Electric Power Automation Equipment, 2021, 41 (12): 1- 11
[2]   李明节, 于钊, 许涛, 等 新能源并网系统引发的复杂振荡问题及其对策研究[J]. 电网技术, 2017, 41 (4): 1035- 1042
LI Mingjie, YU Zhao, XU Tao, et al Study of complex oscillation caused by renewable energy integration and its solution[J]. Power System Technology, 2017, 41 (4): 1035- 1042
[3]   谢小荣, 王路平, 贺静波, 等 电力系统次同步谐振/振荡的形态分析[J]. 电网技术, 2017, 41 (4): 1043- 1049
XIE Xiaorong, WANG Luping, HE Jingbo, et al Analysis of subsynchronous resonance/oscillation types in power systems[J]. Power System Technology, 2017, 41 (4): 1043- 1049
[4]   李景一, 毕天姝, 于钊, 等 直驱风机变流控制系统对次同步频率分量的响应机理研究[J]. 电网技术, 2017, 41 (6): 1734- 1740
LI Jingyi, BI Tianshu, YU Zhao, et al Study on response characteristics of grid converter control system of permanent magnet synchronous generators (PMSG) to subsynchronous frequency component[J]. Power System Technology, 2017, 41 (6): 1734- 1740
[5]   LIU H, XIE X, HE J, et al Subsynchronous interaction between direct-drive PMSG based wind farms and weak AC networks[J]. IEEE Transactions on Power Systems, 2017, 32 (6): 4708- 4720
doi: 10.1109/TPWRS.2017.2682197
[6]   ROSCOE A, KNUEPPEL T, DA SILVA R, et al Response of a grid forming wind farm to system events, and the impact of external and internal damping[J]. IET Renewable Power Generation, 2020, 14 (19): 3908- 3917
doi: 10.1049/iet-rpg.2020.0638
[7]   胡畔, 甘依依. 国网湖北电力首次实现国内无储能支撑新能源电压源机组运行[EB/OL]. (2022-03-14) [2023-09-07]. http://hb.people.com.cn/n2/2022/0314/c194063-35173448.html.
[8]   柴建云, 赵杨阳, 孙旭东, 等 虚拟同步发电机技术在风力发电系统中的应用与展望[J]. 电力系统自动化, 2018, 42 (9): 17- 25
CHAI Jianyun, ZHAO Yangyang, SUN Xudong, et al Application and prospect of virtual synchronous generator in wind power generation system[J]. Automation of Electric Power Systems, 2018, 42 (9): 17- 25
[9]   秦世耀, 齐琛, 李少林, 等 电压源型构网风电机组研究现状及展望[J]. 中国电机工程学报, 2023, 43 (4): 1314- 1333
QIN Shiyao, QI Chen, LI Shaolin, et al Review of the voltage-source grid forming wind turbine[J]. Proceedings of the CSEE, 2023, 43 (4): 1314- 1333
[10]   NGUYEN X H, NAKAJIMA T, OTA Y. Droop-based grid-forming function by type IV wind farm for fast frequency control [C]// 2021 IEEE PES Innovative Smart Grid Technologies-Asia (ISGT Asia) . Brisbane: IEEE, 2021: 1–5.
[11]   王东泽, 孙海顺, 黄碧月, 等 基于虚拟同步控制的电压源型直驱风电机组并网稳定性分析[J]. 高电压技术, 2022, 48 (8): 3282- 3294
WANG Dongze, SUN Haishun, HUANG Biyue, et al Analysis of grid-connected stability of voltage-source-type PMSG-based wind turbine based on virtual synchronous control[J]. High Voltage Engineering, 2022, 48 (8): 3282- 3294
[12]   贺家发, 宋美艳, 兰洲, 等 适应于弱电网的永磁直驱风电机组虚拟惯量协调控制策略[J]. 电力系统自动化, 2018, 42 (9): 83- 90
HE Jiafa, SONG Meiyan, LAN Zhou, et al A virtual inertia coordinated control scheme of PMSG-based wind turbines in weak grids[J]. Automation of Electric Power Systems, 2018, 42 (9): 83- 90
[13]   桑顺, 张琛, 蔡旭, 等 全功率变换风电机组的电压源控制(一): 控制架构与弱电网运行稳定性分析[J]. 中国电机工程学报, 2021, 41 (16): 5604- 5615
SANG Shun, ZHANG Chen, CAI Xu et al. Voltage source control of wind turbines with full-scale converters (part I): control architecture and stability analysis under weak grid conditions[J]. Proceedings of the CSEE, 2021, 41 (16): 5604- 5615
[14]   QU Z, PENG J C H, YANG H, et al Modeling and analysis of inner controls effects on damping and synchronizing torque components in VSG-controlled converter[J]. IEEE Transactions on Energy Conversion, 2021, 36 (1): 488- 499
doi: 10.1109/TEC.2020.3010049
[15]   褚文从, 刘静利, 李永刚, 等 考虑源端特性的虚拟同步直驱风机小信号建模与稳定性分析[J]. 电力自动化设备, 2022, 42 (8): 3- 10
CHU Wencong, LIU Jingli, LI Yonzgang, et al Small-signal modeling and stability analysis of virtual synchronous PMSG considering source characteristics[J]. Electric Power Automation Equipment, 2022, 42 (8): 3- 10
[16]   李永刚, 褚文从, 刘华志 虚拟同步直驱风电场经MMC-HVDC并网的低频振荡特性分析[J]. 电力自动化设备, 2023, 43 (9): 186- 193
LI Yonggang, CHU Wencong, LIU Huazhi Low-frequency oscillation characteristic analysis of grid-connected VSG-PMSG via MMC-HVDC system[J]. Electric Power Automation Equipment, 2023, 43 (9): 186- 193
[17]   马铱林, 杨欢, 屈子森, 等 改善虚拟同步发电机阻尼特性的设计方法[J]. 电网技术, 2021, 45 (1): 269- 275
MA Yilin, YANG Huan, QU Zisen, et al Design method for improving damping characteristics of virtual synchronous generator[J]. Power System Technology, 2021, 45 (1): 269- 275
[18]   QI C, WANG K, ZHONG Q C, et al Transient angle stability of inverters equipped with robust droop control[J]. CSEE Journal of Power and Energy Systems, 2023, 9 (2): 659- 670
[19]   CHEN M, ZHOU D, BLAABJERG F Enhanced transient angle stability control of grid-forming converter based on virtual synchronous generator[J]. IEEE Transactions on Industrial Electronics, 2022, 69 (9): 9133- 9144
doi: 10.1109/TIE.2021.3114723
[20]   SHUAI Z, SHEN C, LIU X, et al Transient angle stability of virtual synchronous generators using Lyapunov’s direct method[J]. IEEE Transactions on Smart Grid, 2019, 10 (4): 4648- 4661
doi: 10.1109/TSG.2018.2866122
[21]   秦垚, 王晗, 杨志千, 等 全功率变换风电机组的电压源控制(二): 电网故障穿越控制与保护[J]. 中国电机工程学报, 2023, 43 (2): 530- 542
QIN Yao, WANG Han, YANG Zhiqian, et al Voltage source control of wind turbine generators with full-scale converters (part II): control and protection of grid fault ride-through[J]. Proceedings of the CSEE, 2023, 43 (2): 530- 542
[22]   PAQUETTE A D, DIVAN D M Virtual impedance current limiting for inverters in microgrids with synchronous generators[J]. IEEE Transactions on Industry Applications, 2015, 51 (2): 1630- 1638
doi: 10.1109/TIA.2014.2345877
[23]   HUANG L, XIN H, WANG Z, et al Transient stability analysis and control design of droop-controlled voltage source converters considering current limitation[J]. IEEE Transactions on Smart Grid, 2019, 10 (1): 578- 591
doi: 10.1109/TSG.2017.2749259
[24]   姜卫同, 胡鹏飞, 尹瑞, 等 基于虚拟同步机的变流器暂态稳定分析及混合同步控制策略[J]. 电力系统自动化, 2021, 45 (22): 124- 133
JIANG Weitong, HU Pengfei, YIN Rui, et al Transient stability analysis and hybrid synchronization control strategy of converter based on virtual synchronous generator[J]. Automation of Electric Power Systems, 2021, 45 (22): 124- 133
[25]   王子骏, 庄可好, 辛焕海, 等 虚拟同步直驱风机低频振荡机理分析及阻尼补偿控制[J]. 电力系统自动化, 2024, 48 (2): 95- 104
WANG Zijun, ZHUANG Kehao, XIN Huanhai, et al Low-frequency oscillation mechanism analysis and damping compensation control of permanent magnet synchronous generator with virtual synchronous control[J]. Automation of Electric Power Systems, 2024, 48 (2): 95- 104
[26]   D'ARCO S, SUUL J A Equivalence of virtual synchronous machines and frequency-droops for converter-based microgrids[J]. IEEE Transactions on Smart Grid, 2014, 5 (1): 394- 395
doi: 10.1109/TSG.2013.2288000
[27]   黄林彬, 章雷其, 辛焕海, 等 下垂控制逆变器的虚拟功角稳定机理分析[J]. 电力系统自动化, 2016, 40 (12): 117- 123
HUANG Linbin, ZHANG Leiqi, XIN Huanhai, et al Mechanism analysis of virtual power angle stability in droop-controlled inverters[J]. Automation of Electric Power Systems, 2016, 40 (12): 117- 123
[28]   袁小明, 程时杰, 胡家兵 电力电子化电力系统多尺度电压功角动态稳定问题[J]. 中国电机工程学报, 2016, 36 (19): 5145- 5154
YUAN Xiaoming, CHENG Shijie, HU Jiabing Multi-time scale voltage and power angle dynamics in power electronics dominated large power systems[J]. Proceedings of the CSEE, 2016, 36 (19): 5145- 5154
[29]   王兆安, 刘进军. 电力电子技术[M]. 北京: 机械工业出版社, 2008.
[1] Hongshuai GUO,Shuyou ZHANG,Guodong YI,Xiaojian LIU,Jianrong TAN. Adaptive slice method based on posterior error of hierarchical N-ary tree mapping Boolean volume contours[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(4): 748-760.
[2] Bing YANG,Wei NA,Xue-qin XIANG. Text-to-image generation method based on single stage generative adversarial network[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(12): 2412-2420.
[3] Bo WANG,Ting-bin LIU,Jian-fei ZHANG,Xiao-xin DU,Xin-wei WANG. Prediction of circRNA and disease association based on fusion similarity and tripartite graph[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(12): 2467-2475.
[4] Gang HU,Qiong NIU,Qin WANG,Li-peng XU,Yong-jun REN. Modeling of node importance in entropy-value structured hole of temporal multilayer network[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 719-725.
[5] Chuan-hua WANG,Quan ZHANG,Hui-min WANG,Xin XU,Ou-bo MA. Reputation model for VANETs with privacy-preserving under blockchain architecture[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 760-772.
[6] Yi-xuan ZHANG,Jian GONG. Multi-layer domain name detection and measurement based on DNS traffic[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2423-2429.
[7] Hai-xiu CHENG,Guan-lin LI,Ling ZHANG. Dynamic resource reservation algorithm for core network video business with bandwidth reduction based on time slot[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1746-1752.
[8] Dong LI,Yu LU,Jun-qing YU. Security of source address validation improvement binding table in software defined network[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1543-1549.
[9] Qiu-yun WU,Wei DING. Analysis of Internet scanning behavior based on dynamic dark network[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1550-1556.
[10] Ping QI,Hong SHU. Task offloading strategy considering terminal mobility in medical wisdom scenario[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1126-1137.
[11] Yi-han LUO,Jie-ren CHENG,Xiang-yan TANG,Ming-wang OU,Tian WANG. Early warning model of DDoS attack situation based on adaptive threshold[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 704-711.
[12] Wei CHEN,Xue-jiao LIU,Ying-jie XIA. Multi-factor reputation evaluation model based on analytic hierarchy process in vehicle Ad-hoc networks[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 722-731.
[13] YOU Lu-jin, LU Xing-jian, HE Gao-qi. Research on sub-health in cloud environment[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(6): 1181-1189.
[14] ZHANG Xin-xin, XU Ke, ZHONG Yi-Feng, SU Hui. Evolutionary game analysis on cooperative behaviors of internet service providers[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(6): 1214-1224.
[15] LI Jian-li, DING Ding, LI Tao. Multi-objective hybrid cloud task scheduling using twice clustering[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(6): 1233-1241.