Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (12): 2467-2475    DOI: 10.3785/j.issn.1008-973X.2023.12.014
    
Prediction of circRNA and disease association based on fusion similarity and tripartite graph
Bo WANG(),Ting-bin LIU,Jian-fei ZHANG,Xiao-xin DU,Xin-wei WANG
College of Computer and Control Engineering, Qiqihar University, Qiqihar 161006, China
Download: HTML     PDF(1128KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Traditional biomedical experimental methods for verifying the relationship between circRNA and disease are time-consuming, laborious, and costly. Therefore, a model called FSTPGCDA was proposed for circRNA-disease association prediction research, which was based on the fusion of tripartite graph and fusion similarity. FSTPGCDA incorporated circRNA-disease association information, circRNA-gene association information, circRNA sequence information, and disease semantic information. The similarity matrix was obtained by combining Laplacian eigenmaps and Jaccard index for fusion similarity calculation. The fusion similarity matrix was generated by weighting the similarity matrices obtained from different similarity algorithms. The gene-circRNA-disease tripartite graph was constructed using the circRNA-disease association matrix and circRNA-gene association matrix. The initial resource allocation was performed using the fusion similarity, and resource allocation was carried out using a greedy algorithm. The experimental validation demonstrated that FSTPGCDA exhibited good predictive performance and robustness.



Key wordscircRNA and disease association      multi-source information fusion      similarity fusion      tripartite graph      case validation     
Received: 14 May 2023      Published: 27 December 2023
CLC:  TP 393  
Fund:  黑龙江省教育厅基本科研业务费面上项目 (145209125)
Cite this article:

Bo WANG,Ting-bin LIU,Jian-fei ZHANG,Xiao-xin DU,Xin-wei WANG. Prediction of circRNA and disease association based on fusion similarity and tripartite graph. Journal of ZheJiang University (Engineering Science), 2023, 57(12): 2467-2475.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.12.014     OR     https://www.zjujournals.com/eng/Y2023/V57/I12/2467


基于融合相似性和三部图的 circRNA 与疾病关联预测

传统的生物医学实验方法验证circRNA与疾病之间的关系存在耗时、耗力且成本过高的问题,为此提出基于三部图融合相似性的circRNA与疾病关联预测研究的模型(FSTPGCDA). FSTPGCDA引入circRNA-disease关联信息、circRNA-gene关联信息、circRNA序列信息和疾病语义信息. 进行拉普拉斯特征映射和Jaccard指标的融合相似性计算得到相似性矩阵,将不同相似性算法得到的相似性矩阵加权融合得到融合相似性矩阵. 利用circRNA-disease关联矩阵和circRNA-gene关联矩阵构建gene-circRNA-disease三部图. 通过融合相似性方法为三部图分配初始资源,使用贪心算法进行资源分配. 实例验证表明,FSTPGCDA的预测性能和鲁棒性较好.


关键词: circRNA与疾病关联,  多源信息融合,  相似性融合,  三部图,  实例验证 
数据集 n
circRNA disease gene miRNA circRNA?disease circRNA?gene circRNA?miRNA
D1 2596 67 1716 2983 2318
D2 514 62 461 647 756
Tab.1 Data set association information
Fig.1 Flow chart of circRNA and disease association prediction model based on fusion similarity and tripartite graph
数据集 测试 AUC% AUPR% TPR% p% F1 % MCC%
D1 LOOCV 97.01 86.26 98.18 4.32 8.27 89.06
D1 5折 97.01 86.27 98.09 4.35 8.30 89.11
D1 10折 97.02 86.27 98.15 4.33 8.29 89.08
D1 均值 97.01 86.27 98.14 4.33 8.29 89.08
D2 LOOCV 94.46 78.01 93.85 5.40 10.22 86.68
D2 5折 94.47 77.98 93.88 5.41 10.23 86.67
D2 10折 94.47 78.03 93.87 5.41 10.25 86.68
D2 均值 94.47 78.01 93.87 5.41 10.23 86.68
Tab.2 Comparison of indicators for proposed model at different test methods
Fig.2 Comparison of ROC for different models
Fig.3 Comparison of PR for different models
Fig.4 ROC comparison of different similarity for proposed model
排名 circRNA PMID号
1 hsa_circ_0001946 10360776
2 hsa_circ_0003266 24314030
3 hsa_circ_0000284 28794202
4 hsa_circ_0011385 32015691
5 hsa_circ_0000520 33991457
6 hsa_circ_0061265
7 hsa_circ_0005273 30458784
8 hsa_circ_0028173 33789319
9 hsa_circ_0000144 33030352
10 hsa_circ_0009361 33244270
11 hsa_circ_0000658 35148461
12 hsa_circ_0012634 36445493
13 hsa_circ_0072088 33928018
14 hsa_circ_0001336 30815697
15 hsa_circ_0058058 12939746
Tab.3 First 15 circRNAs associated with bladder cancer
Fig.5 Survival analysis of CDR1 gene in patients with gastric cancer
Fig.6 Differentiation and expression of CDR1 gene in normal and tumor sample
Fig.7 Gene set enriched in immune deficiency
[1]   雷秀娟, 张文祥, 刘恋 基于多数据融合的circRNA–疾病关联关系预测[J]. 中国科学: 信息科学, 2021, 51 (6): 927- 939
LEI Xiu-juan, ZHANG Wen-xiang, LIU Lian Prediction of circRNA-disease association based on multiple biological data[J]. Scientia Sinica: Informations, 2021, 51 (6): 927- 939
doi: 10.1360/SSI-2019-0142
[2]   DU W W, FANG L, YANG W, et al Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity[J]. Cell Death and Differentiation, 2017, 24: 357- 370
[3]   LI P, CHEN S, CHEN H, et al Using circular RNA as a novel type of biomarker in the screening of gastric cancer[J]. Clinica Chimica Acta, 2015, 444: 132- 136
doi: 10.1016/j.cca.2015.02.018
[4]   VO J N, CIESLIK M, ZHANG Y, et al The landscape of circular RNA in cancer[J]. Cell, 2019, 176 (4): 869- 881
doi: 10.1016/j.cell.2018.12.021
[5]   PIWECKA M, GLAZAR P, HERNANDEZ-MIRANDA L R, et al Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function[J]. Science, 2017, 357 (6357): eaam8526
doi: 10.1126/science.aam8526
[6]   GLAZAR P, PAPAVASILEIOU P, RAJEWSKY N circBase: a database for circular RNAs[J]. RNA, 2014, 20 (11): 1666- 1670
[7]   FAN C, LEI X, FANG Z, et al CircR2Disease: a manually curated database for experimentally supported circular RNAs associated with various diseases[J]. Database, 2018, 2018: bay044
[8]   ZHAO Z, WANG K, WU F, et al circRNA disease: a manually curated database of experimentally supported circRNA-disease associations[J]. Cell Death and Disease, 2018, 9: 475
doi: 10.1038/s41419-018-0503-3
[9]   GHOSAL S, DAS S, SEN R, et al Circ2Traits: a comprehensive database for circular RNA potentially associated with disease and traits[J]. Frontiers in Genetics, 2013, 4: 283
[10]   WANG L, YAN X, LIU M L, et al Prediction of RNA-protein interactions by combining deep convolutional neural network with feature selection ensemble method[J]. Journal of Theoretical Biology, 2019, 461: 230- 238
doi: 10.1016/j.jtbi.2018.10.029
[11]   FAN C, LEI X, WU F X Prediction of CircRNA-disease associations using KATZ model based on heterogeneous networks[J]. International Journal of Biological Sciences, 2018, 14: 1950- 1959
doi: 10.7150/ijbs.28260
[12]   LI G, YUE Y, LIANG C, et al NCPCDA: network consistency projection for circRNA-disease association prediction[J]. RSC Advances, 2019, 9: 33222- 33228
doi: 10.1039/C9RA06133A
[13]   DING Y, CHEN B, LEI X, et al Predicting novel CircRNA-disease associations based on random walk and logistic regression model[J]. Computational Biology and Chemistry, 2020, 87: 107287
doi: 10.1016/j.compbiolchem.2020.107287
[14]   LEI X, FANG Z, GUO L Predicting circRNA-disease associations based on improved collaboration filtering recommendation system with multiple data[J]. Frontiers in Genetics, 2019, 10: 897
doi: 10.3389/fgene.2019.00897
[15]   DEEPTHI K, JERESH A S An ensemble approach for circRNA-disease association prediction based on autoencoder and deep neural network[J]. Gene, 2020, 762: 145040
doi: 10.1016/j.gene.2020.145040
[16]   XIAO Q, FU Y, YANG Y, et al NSL2CD: identifying potential circRNA-disease associations based on network embedding and subspace learning[J]. Briefings in Bioinformatics, 2021, 22 (6): bbab177
doi: 10.1093/bib/bbab177
[17]   JEFFREY H J Chaos game representation of gene structure[J]. Nucleic Acids Research, 1990, 18 (8): 2163- 2170
doi: 10.1093/nar/18.8.2163
[18]   WANG L, YOU Z H, LI J Q, et al IMS-CDA: prediction of circrna-disease associations from the integration of multisource similarity information with deep stacked autoencoder model[J]. IEEE Transactions on Cybernetics, 2021, 51 (11): 5522- 5531
doi: 10.1109/TCYB.2020.3022852
[19]   SHI Y, LAI R, KERN K, et al. Harmonic surface mapping with Laplace-Beltrami eigenmaps [C]// Proceedings of the 11th International Conference on Medical Image Computing and Computer-Assisted Intervention. [S.l.]: Springer, 2008: 147-154.
[20]   耿霞, 韩凯健 一种基于网络表示学习的miRNA-疾病关联预测方法[J]. 计算机应用研究, 2021, 38 (5): 1365- 1370
GENG Xia, HAN Kai-jian miRNA-disease association prediction based on network representation learning method[J]. Applied Research of Computers, 2021, 38 (5): 1365- 1370
doi: 10.19734/j.issn.1001-3695.2020.07.0176
[21]   马毅, 郭杏莉, 孙宇彤, 等 基于HeteSim的疾病关联长非编码RNA预测[J]. 计算机研究与发展, 2019, 56 (9): 1889- 1896
MA Yi, GUO Xing-li, SUN Yu-tong, et al Prediction of disease association long non-coding RNA based on HeteSim[J]. Journal of Computer Research and Development, 2019, 56 (9): 1889- 1896
doi: 10.7544/issn1000-1239.2019.20180834
[22]   MENG X, HU D, ZHANG P, et al CircFunBase: a database for functional circular RNAs[J]. Database, 2019, 2019: baz003
[23]   LORD P W, STEVENS R D, BRASS A, et al Investigating semantic similarity measures across the Gene Ontology: the relationship between sequence and annotation[J]. Bioinformatics, 2003, 19 (10): 1275- 1283
doi: 10.1093/bioinformatics/btg153
[24]   LAN W, ZHU M, CHEN Q, et al CircR2Cancer: a manually curated database of associations between circRNAs and cancers[J]. Database, 2020, 2020: baaa085
doi: 10.1093/database/baaa085
[25]   JIANG Q, WANG Y, HAO Y, et al miR2Disease: a manually curated database for microRNA deregulation in human disease[J]. Nucleic Acids Research, 2009, 37 (Suppl.1): D98- D104
[26]   WANG B, ZHANG C, DU X X, et al lncRNA-disease association prediction based on latent factor model and projection[J]. Scientific Reports, 2021, 11: 19965
doi: 10.1038/s41598-021-99493-5
[27]   SCHOBER P, BOER C, SCHWARTE L A Correlation coefficients: appropriate use and interpretation[J]. Anesthesia and Analgesia, 2018, 126 (5): 1763- 1768
doi: 10.1213/ANE.0000000000002864
[28]   ZHONG Y, DU Y, YANG X, et al Circular RNAs function as ceRNAs to regulate and control human cancer progression[J]. Molecular Cancer, 2018, 17: 79
doi: 10.1186/s12943-018-0827-8
[29]   张奕, 王真梅 图自动编码器上二阶段融合实现的环状RNA-疾病关联预测[J]. 计算机应用, 2023, 43 (6): 1979- 1986
ZHANG Yi, WANG Zhen-mei circRNA-disease association prediction by two-stage fusion of graph auto-encoder[J]. Journal of Computer Applications, 2023, 43 (6): 1979- 1986
[30]   JEFFRIES C D, FORD J R, TILSON J L, et al A greedy regression algorithm with coarse weights offers novel advantages[J]. Scientific Reports, 2022, 12: 5440
doi: 10.1038/s41598-022-09415-2
[31]   任首朋, 李劲, 王静茹, 等 基于集成回归决策树的lncRNA-疾病关联预测方法[J]. 计算机科学, 2022, 49 (2): 265- 271
REN Shou-peng, LI Jin, WANG Jing-ru, et al Ensemble regression decision trees-based lncRNA-disease association prediction[J]. Computer Science, 2022, 49 (2): 265- 271
[32]   张奕, 蔡钢生, 王真梅 基于语义与全局双重注意力机制的长链非编码RNA-疾病关联预测模型[J]. 计算机应用, 2023, 43 (7): 2125- 2132
ZHANG Yi, CAI Gang-sheng, WANG Zhen-mei Long non-coding RNA-disease association prediction model based on semantic and global dual attention mechanisms[J]. Journal of Computer Applications, 2023, 43 (7): 2125- 2132
[33]   XIAO Q, ZHONG J, TANG X, et al iCDA-CMG: identifying circRNA-disease associations by federating multi-similarity fusion and collective matrix completion[J]. Molecular Genetics and Genomics, 2021, 296: 223- 233
doi: 10.1007/s00438-020-01741-2
[34]   LU C, ZENG M, ZHANG F, et al Deep matrix factorization improves prediction of human circRNA-disease associations[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 25 (3): 891- 899
doi: 10.1109/JBHI.2020.2999638
[35]   LAN W, DONG Y, CHEN Q, et al KGANCDA: predicting circRNA-disease associations based on knowledge graph attention network[J]. Briefings in Bioinformatics, 2022, 23 (1): bbab494
doi: 10.1093/bib/bbab494
[36]   LAN W, ZHANG H, DONG Y, et al DRGCNCDA: predicting circRNA-disease interactions based on knowledge graph and disentangled relational graph convolutional network[J]. Methods, 2022, 208: 35- 41
doi: 10.1016/j.ymeth.2022.10.002
[37]   DOBRUCH J, OSZCZUDŁOWSKI M Bladder cancer: current challenges and future directions[J]. Medicina, 2021, 57 (8): 749
doi: 10.3390/medicina57080749
[38]   GREENLEE J E, DALMAU J, LYONS T, et al Association of anti-Yo (type I) antibody with paraneoplastic cerebellar degeneration in the setting of transitional cell carcinoma of the bladder: detection of Yo antigen in tumor tissue and fall in antibody titers following tumor removal[J]. Annals of Neurology, 1999, 45 (6): 805- 809
doi: 10.1002/1531-8249(199906)45:6<805::AID-ANA18>3.0.CO;2-G
[39]   CHEN P, CHEN J, HE L, et al Identification of circRNA-miRNA-mRNA regulatory network in bladder cancer by integrated analysis[J]. Urologia Internationalis, 2021, 105 (7/8): 705- 715
[1] Bing YANG,Wei NA,Xue-qin XIANG. Text-to-image generation method based on single stage generative adversarial network[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(12): 2412-2420.
[2] Gang HU,Qiong NIU,Qin WANG,Li-peng XU,Yong-jun REN. Modeling of node importance in entropy-value structured hole of temporal multilayer network[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 719-725.
[3] Chuan-hua WANG,Quan ZHANG,Hui-min WANG,Xin XU,Ou-bo MA. Reputation model for VANETs with privacy-preserving under blockchain architecture[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 760-772.
[4] Yi-xuan ZHANG,Jian GONG. Multi-layer domain name detection and measurement based on DNS traffic[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2423-2429.
[5] Hai-xiu CHENG,Guan-lin LI,Ling ZHANG. Dynamic resource reservation algorithm for core network video business with bandwidth reduction based on time slot[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1746-1752.
[6] Dong LI,Yu LU,Jun-qing YU. Security of source address validation improvement binding table in software defined network[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1543-1549.
[7] Qiu-yun WU,Wei DING. Analysis of Internet scanning behavior based on dynamic dark network[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1550-1556.
[8] Ping QI,Hong SHU. Task offloading strategy considering terminal mobility in medical wisdom scenario[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1126-1137.
[9] Yi-han LUO,Jie-ren CHENG,Xiang-yan TANG,Ming-wang OU,Tian WANG. Early warning model of DDoS attack situation based on adaptive threshold[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 704-711.
[10] Wei CHEN,Xue-jiao LIU,Ying-jie XIA. Multi-factor reputation evaluation model based on analytic hierarchy process in vehicle Ad-hoc networks[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 722-731.
[11] YOU Lu-jin, LU Xing-jian, HE Gao-qi. Research on sub-health in cloud environment[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(6): 1181-1189.
[12] ZHANG Xin-xin, XU Ke, ZHONG Yi-Feng, SU Hui. Evolutionary game analysis on cooperative behaviors of internet service providers[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(6): 1214-1224.
[13] LI Jian-li, DING Ding, LI Tao. Multi-objective hybrid cloud task scheduling using twice clustering[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(6): 1233-1241.
[14] WANG Yu-xiang, LI Sheng-jie, WANG Hao, MA Jun-yi, WANG Ya-sha, ZHANG Da-qing. Survey on Wi-Fi based contactless activity recognition[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(4): 648-654.
[15] QIAN Liang-fang, ZHANG Sen-lin, LIU Mei-qin. Reservation-based MAC protocol for underwater wireless sensor networks with data train[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(4): 691-696.