Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (6): 1133-1141    DOI: 10.3785/j.issn.1008-973X.2024.06.004
计算机技术     
基于新型编码解码网络的复杂输电线识别
李运堂(),李恒杰,张坤,王斌锐,关山越,陈源
中国计量大学 机电工程学院,浙江 杭州 310018
Recognition of complex power lines based on novel encoder-decoder network
Yuntang LI(),Hengjie LI,Kun ZHANG,Binrui WANG,Shanyue GUAN,Yuan CHEN
College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, China
 全文: PDF(2429 KB)   HTML
摘要:

构建新型编码解码网络实现图像中多根交叉复杂输电线的高精度快速识别. 为了减少网络参数,编码器取常规MobileNetV3的前16层,并且采用坐标注意力机制代替常规MobileNetV3的挤压和激励注意力机制,获取特征图的通道信息和位置信息;解码器通过金字塔池化模块获取输电线多尺度特征信息,提高识别精度;采用跳跃链接将编码器第2、4、7、11和13层特征图经锐化核卷积处理后分别与解码器的特征图堆叠,加强复杂输电线边缘特征提取;引入混合损失函数解决图像中输电线像素少、背景像素多的类别不平衡问题;利用迁移学习加快网络训练速度. 实验结果表明,新型编码解码网络的平均像素精度(MPA)、平均交并比(MIOU)和识别速度分别为92.18%、84.27%和32帧/s,优于PSPNet、U2Net和其他输电线识别网络的.

关键词: 复杂输电线编码解码网络MobileNetV3注意力机制损失函数    
Abstract:

Accurate and quick recognition of multiple and intersecting complex power lines from images was achieved by constructing a novel encoder-decoder network. The first 16 layers of regular MobileNetV3 were taken by the encoder to reduce network parameters, and the coordinate attention mechanism was used to replace the squeeze and excitation attention mechanism of regular MobileNetV3 to obtain the channel and position information of feature maps. The multi-scale feature information of power lines was obtained by the decoder through the pyramid pooling module to improve the recognition accuracy. The encoder feature maps of 2nd, 4th, 7th, 11th and 13th layers were processed by the sharpened kernel convolution and were connected to the corresponding layers of decoder, enhancing the extraction of complex power lines edge features. The hybrid loss function was used to resolve the imbalance between classes of images with fewer power lines and more background pixels. The speed of network training was accelerated by transfer learning. Experimental results indicated that the mean pixel accuracy (MPA), mean intersection over union (MIOU) and recognition speed of the novel encoder-decoder network were 92.18%, 84.27%, and 32 frames per second, respectively, which were superior to those of PSPNet, U2Net, and other power lines recognition networks.

Key words: complex power lines    encoder-decoder network    MobileNetV3    attention mechanism    loss function
收稿日期: 2023-08-14 出版日期: 2024-05-25
CLC:  TP 391  
基金资助: 浙江省属高校基本科研业务费专项资金资助项目(2020YW29).
作者简介: 李运堂(1976—),男,教授,硕导,博士,从事无人机电力线巡检研究. orcid.org/0000-0003-0924-8187. E-mail:Yuntangli@cjlu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
李运堂
李恒杰
张坤
王斌锐
关山越
陈源

引用本文:

李运堂,李恒杰,张坤,王斌锐,关山越,陈源. 基于新型编码解码网络的复杂输电线识别[J]. 浙江大学学报(工学版), 2024, 58(6): 1133-1141.

Yuntang LI,Hengjie LI,Kun ZHANG,Binrui WANG,Shanyue GUAN,Yuan CHEN. Recognition of complex power lines based on novel encoder-decoder network. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1133-1141.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.06.004        https://www.zjujournals.com/eng/CN/Y2024/V58/I6/1133

图 1  新型编码解码网络
图 2  常规MobileNetV3
图 3  Bneck模块
图 4  坐标注意力模块
图 5  Bneck-CA模块
图 6  金字塔池化模块
图 7  不同深度的特征图可视化
图 8  Mosaic数据扩充
图 9  复杂输电线图像标注
训练参数数值
Batch_size8
Initial_lr0.0001
Epoch500
CudaTrue
表 1  新型编码解码网络训练参数
图 10  网络训练损失变化
方法MPA/%MIOU/%FPS/(帧·s?1)
方法189.6381.7722
方法288.1780.9228
方法388.9381.3827
方法488.2780.8735
方法589.6882.1534
方法690.7282.7732
方法791.5883.3431
方法891.9784.0231
方法992.1884.2732
表 2  消融实验结果对比
图 11  5种网络输电线识别结果
网络MPA/%MIOU/%FPS/(帧·s?1)
PSPNet81.6173.789
U2Net89.7282.318
文献[12]90.2582.7529
文献[13]87.3779.6221
新型编码解码网络92.1884.2732
表 3  5种网络识别结果对比
22 周登文, 田金月, 马路遥, 等 基于多级特征并联的轻量级图像语义分割[J]. 浙江大学学报:工学版, 2020, 54 (8): 1516- 1524
ZHOU Dengwen, TIAN Jinyue, MA luyao, et al Lightweight image semantic segmentation based on multi-level feature cascaded network[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (8): 1516- 1524
23 柴玉梅, 员武莲, 王黎明, 等 基于双注意力机制和迁移学习的跨领域推荐模型[J]. 计算机学报, 2020, 43 (10): 1924- 1942
CHAI Yumei, YUN Wulian, WANG Liming, et al A cross-domain recommendation model based on dual attention mechanism and transfer learning[J]. Chinese Journal of Computers, 2020, 43 (10): 1924- 1942
doi: 10.11897/SP.J.1016.2020.01924
24 QIN X, ZHANG Z, HUANG C, et al U2-Net: going deeper with nested U-structure for salient object detection[J]. Pattern Recognition, 2020, 106: 1- 12
1 YANG L, FAN J, LIU Y, et al A review on state-of-the-art power line inspection techniques[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69 (12): 9350- 9365
doi: 10.1109/TIM.2020.3031194
2 XU B, ZHAO Y, WANG T, et al Development of power transmission line detection technology based on unmanned aerial vehicle image vision[J]. SN Applied Sciences, 2023, 5 (3): 1- 15
3 张从新, 赵乐, 王先培 复杂地物背景下电力线的快速提取算法[J]. 武汉大学学报:工学版, 2018, 51 (8): 732- 739
ZHANG Congxin, ZHAO Le, WANG Xianpei Research on fast extraction algorithm of power line in complex ground object background[J]. Engineering Journal of Wuhan University, 2018, 51 (8): 732- 739
4 赵乐, 王先培, 代荡荡, 等 复杂背景下电力线自动提取算法[J]. 高电压技术, 2019, 45 (1): 218- 227
ZHAO Le, WANG Xianpei, DAI Dangdang, et al Automatic extraction algorithm of power line in complex background[J]. High Voltage Engineering, 2019, 45 (1): 218- 227
5 周封, 任贵新 基于颜色空间变量的输电线图像分类及特征提取[J]. 电力系统保护与控制, 2018, 46 (5): 89- 98
ZHOU Feng, REN Guixin Image classification and feature extraction of transmission line based on color space variable[J]. Power System Protection and Control, 2018, 46 (5): 89- 98
doi: 10.7667/PSPC170283
6 LI P, QIU R, WANG M, et al Online monitoring of overhead power lines against tree intrusion via a low-cost camera and mobile edge computing approach[J]. Journal of Physics: Conference Series, 2023, 2422 (1): 1- 17
7 ZHAO L, WANG X, YAO H, et al Power line extraction from aerial images using object-based markov random field with anisotropic weighted penalty[J]. IEEE Access, 2019, 7: 125333- 125356
doi: 10.1109/ACCESS.2019.2939025
8 田萱, 王亮, 丁琪 基于深度学习的图像语义分割方法综述[J]. 软件学报, 2019, 30 (2): 440- 468
TIAN Xuan, WANG Liang, DING Qi Review of image semantic segmentation based on deep learning[J]. Journal of Software, 2019, 30 (2): 440- 468
9 ZHOU Y, REN Y, XU E, et al Supervised semantic segmentation based on deep learning: a survey[J]. Multimedia Tools and Applications, 2022, 81 (20): 29283- 29304
doi: 10.1007/s11042-022-12842-y
10 许刚, 李果 轻量化航拍图像电力线语义分割[J]. 中国图象图形学报, 2021, 26 (11): 2605- 2618
XU Gang, LI Guo Research on lightweight neural network of aerial powerline image segmentation[J]. Journal of Image and Graphics, 2021, 26 (11): 2605- 2618
11 黄巨挺, 高宏力, 戴志坤 基于编码解码结构的移动端电力线语义分割方法[J]. 计算机应用, 2021, 41 (10): 2952- 2958
HUANG Juting, GAO Hongli, DAI Zhikun Semantic segmentation method of power line on mobile terminals based on encoder-decoder structure[J]. Journal of Computer Applications, 2021, 41 (10): 2952- 2958
doi: 10.11772/j.issn.1001-9081.2020122037
12 李运堂, 詹叶君, 王鹏峰, 等 基于新型编解码网络的复杂背景航拍图像输电线识别[J]. 传感技术学报, 2022, 35 (8): 1057- 1064
LI Yuntang, ZHAN Yejun, WANG Pengfeng, et al Power line recognition from aerial images with complex background based on new codec network[J]. Chinese Journal of Sensors and Actuators, 2022, 35 (8): 1057- 1064
13 JAFFARI R, HASHMANI M A, REYES-ALDASORO C C A novel focal phi loss for power line segmentation with auxiliary classifier U-Net[J]. Sensors, 2021, 21 (8): 1- 23
doi: 10.1109/JSEN.2021.3063942
14 LI B, CHEN C, DONG S, et al Transmission line detection in aerial images: an instance segmentation approach based on multitask neural networks[J]. Signal Processing: Image Communication, 2021, 96: 1- 9
15 YANG L, FAN J, XU S, et al Vision-based power line segmentation with an attention fusion network[J]. IEEE Sensors Journal, 2022, 22 (8): 8196- 8205
doi: 10.1109/JSEN.2022.3157336
16 YANG Y, HAN J Real-time object detector based MobileNetV3 for UAV applications[J]. Multimedia Tools and Applications, 2022, 82 (12): 18709- 18725
17 HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design [C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Nashville: IEEE, 2021: 13713−13722.
18 ZHANG Y, SIDIBE D, MOREL O, et al Deep multimodal fusion for semantic image segmentation: a survey[J]. Image and Vision Computing, 2021, 105: 1- 17
19 LIN T, GOYAL P, GIRSHICK R, et al Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42 (2): 318- 327
doi: 10.1109/TPAMI.2018.2858826
20 KANG D, PARK S, PAIK J SdBAN: salient object detection using bilateral attention network with dice coefficient loss[J]. IEEE Access, 2020, 8: 104357- 104370
doi: 10.1109/ACCESS.2020.2999627
[1] 杨军,张琛. 基于边界点估计与稀疏卷积神经网络的三维点云语义分割[J]. 浙江大学学报(工学版), 2024, 58(6): 1121-1132.
[2] 邢志伟,朱书杰,李彪. 基于改进图卷积神经网络的航空行李特征感知[J]. 浙江大学学报(工学版), 2024, 58(5): 941-950.
[3] 刘毅,陈一丹,高琳,洪姣. 基于多尺度特征融合的轻量化道路提取模型[J]. 浙江大学学报(工学版), 2024, 58(5): 951-959.
[4] 魏翠婷,赵唯坚,孙博超,刘芸怡. 基于改进Mask R-CNN与双目视觉的智能配筋检测[J]. 浙江大学学报(工学版), 2024, 58(5): 1009-1019.
[5] 宦海,盛宇,顾晨曦. 基于遥感图像道路提取的全局指导多特征融合网络[J]. 浙江大学学报(工学版), 2024, 58(4): 696-707.
[6] 宋明俊,严文,邓益昭,张俊然,涂海燕. 轻量化机器人抓取位姿实时检测算法[J]. 浙江大学学报(工学版), 2024, 58(3): 599-610.
[7] 江照意,邹文钦,郑晟豪,宋超,杨柏林. 基于场景流的可变速率动态点云压缩[J]. 浙江大学学报(工学版), 2024, 58(2): 279-287.
[8] 姚鑫骅,于涛,封森文,马梓健,栾丛丛,沈洪垚. 基于图神经网络的零件机加工特征识别方法[J]. 浙江大学学报(工学版), 2024, 58(2): 349-359.
[9] 秦思怡,盖绍彦,达飞鹏. 混合采样下多级特征聚合的视频目标检测算法[J]. 浙江大学学报(工学版), 2024, 58(1): 10-19.
[10] 李海烽,张雪英,段淑斐,贾海蓉,Huizhi Liang . 融合生成对抗网络与时间卷积网络的普通话情感识别[J]. 浙江大学学报(工学版), 2023, 57(9): 1865-1875.
[11] 赵小强,王泽,宋昭漾,蒋红梅. 基于动态注意力网络的图像超分辨率重建[J]. 浙江大学学报(工学版), 2023, 57(8): 1487-1494.
[12] 王慧欣,童向荣. 融合知识图谱的推荐系统研究进展[J]. 浙江大学学报(工学版), 2023, 57(8): 1527-1540.
[13] 宋秀兰,董兆航,单杭冠,陆炜杰. 基于时空融合的多头注意力车辆轨迹预测[J]. 浙江大学学报(工学版), 2023, 57(8): 1636-1643.
[14] 李晓艳,王鹏,郭嘉,李雪,孙梦宇. 基于双注意力机制的多分支孪生网络目标跟踪[J]. 浙江大学学报(工学版), 2023, 57(7): 1307-1316.
[15] 权巍,蔡永青,王超,宋佳,孙鸿凯,李林轩. 基于3D-ResNet双流网络的VR病评估模型[J]. 浙江大学学报(工学版), 2023, 57(7): 1345-1353.