计算机技术、信息工程 |
|
|
|
|
基于卷积辅助自注意力的胸部疾病分类网络 |
张自然( ),李锵,关欣*( ) |
天津大学 微电子学院,天津 300072 |
|
Classification network for chest disease based on convolution-assisted self-attention |
Ziran ZHANG( ),Qiang LI,Xin GUAN*( ) |
School of Microelectronics, Tianjin University, Tianjin 300072, China |
1 |
JACOBI A, CHUNG M, BERNHEIM A, et al. Portable chest X-ray in coronavirus disease-19 (COVID-19): a pictorial review[J]. Clinical Imaging, 2020, 64 (8): 35- 42
|
2 |
HEIDARI A, NAVIMIPOUR N J, UNAL M, et al. The COVID-19 epidemic analysis and diagnosis using deep learning: a asystematic literature review and future directions[J]. Computers in Biology and Medicine, 2022, 141: 105141
doi: 10.1016/j.compbiomed.2021.105141
|
3 |
郑光远, 刘峡壁, 韩光辉 医学影像计算机辅助检测与诊断系统综述[J]. 软件学报, 2018, 29 (5): 1471- 1514 ZHENG Guangyuan, LIU Xiabi, HAN Guanghui Survey on medical image computer aided detection and diagnosis systems[J]. Journal of Software, 2018, 29 (5): 1471- 1514
|
4 |
CHEN J T, YU H Y, FENG R W, et al. Flow-Mixup: classifying multi-labeled medical images with corrupted labels [C]// IEEE International Conference on Bioinformatics and Biomedicine. Seoul: IEEE, 2020: 534-541.
|
5 |
ANWAR S M, MAJID M, QAYYUM A, et al. Medical image analysis using convolutional neural networks: a review[J]. Journal of Medical Systems, 2018, 42 (11): 226
doi: 10.1007/s10916-018-1088-1
|
6 |
YI X, WALIA E, BABYN P Generative adversarial network in medical imaging: a review[J]. Medical Image Analysis, 2019, 58: 101552
doi: 10.1016/j.media.2019.101552
|
7 |
ZHOU S K, LE H N, LUU K, et al. Deep reinforcement learning in medical imaging: a literature review[J]. Medical Image Analysis, 2021, 73: 102193
doi: 10.1016/j.media.2021.102193
|
8 |
LI Q, LAI Y, ADAMU MJ Multi-level residual feature fusion network for thoracic disease classification in chest x-ray images[J]. IEEE Access, 2023, 11 (11): 40988- 41002
|
9 |
胡锦波, 聂为之, 宋丹, 等 可形变Transformer辅助的胸部X光影像疾病诊断模型[J]. 浙江大学学报: 工学版, 2023, 57 (10): 1923- 1932 HU Jinbo, NIE Weizhi, SONG Dan, et al. Chest X-ray imaging disease diagnosis model assisted by deformable Transformer[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (10): 1923- 1932
|
10 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems . [S. l.]: Curran Associates, 2017: 6000-6010.
|
11 |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale [EB/OL]. (2021-06-03) [2023-08-05]. https://arxiv.org/pdf/2010.11929.pdf.
|
12 |
LIU Z, LIN Y T, CAO Y, et al. Swin Transformer: hierarchical vision Transformer using shifted windows [C]// IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 9992-10002.
|
13 |
WU K, PENG H W, CHEN M H, et al. Rethinking and improving relative position encoding for vision [C]// IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 10013-10021.
|
14 |
ZHU K, WU J K. Residual attention: a simple but effective method for multi-label recognition [C]// IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 184-193.
|
15 |
WANG X S, PENG Y F, LU L, et al. ChestX-ray8: hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases [C]// 30th IEEE/CVF Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 3462-3471.
|
16 |
IRVIN J, RAJPURKAR P, KO M, et al. CheXpert: a large chest radiograph dataset with uncertainty labels and expert comparison [C]// 33rd AAAI Conference on Artificial Intelligence. Honolulu: AAAI, 2019: 590-597.
|
17 |
JOHNSON A E W, POLLARD T J, BERKOWITZ S J, et al. MIMIC-CXR, a de-identified publicly available database of chest radiographs with free-text reports[J]. Scientific Data, 2019, 6 (1): 317
doi: 10.1038/s41597-019-0322-0
|
18 |
CHEN B Z, LI J X, GUO X B, et al. DualCheXNet: dual asymmetric feature learning for thoracic disease classification in chest X-rays[J]. Biomedical Signal Processing and Control, 2019, 53: 101554
doi: 10.1016/j.bspc.2019.04.031
|
19 |
WANG H Y, WANG S S, QIN Z B, et al. Triple attention learning for classification of 14 thoracic diseases using chest radiography[J]. Medical Image Analysis, 2021, 67 (1): 8415- 8423
|
20 |
CHEN K, WANG X Q, ZHANG S W Thorax disease classification based on pyramidal convolution shuffle attention neural network[J]. IEEE Access, 2022, 10: 85571- 85581
doi: 10.1109/ACCESS.2022.3198958
|
21 |
CHEN B Z, ZHANG Z, LI Y Z, et al. Multi-label chest X-ray image classification via semantic similarity graph embedding[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32 (4): 2455- 2468
doi: 10.1109/TCSVT.2021.3079900
|
22 |
JIANG X B, ZHU Y, GAI G, et al. MXT: a new variant of pyramid vision Transformer for multi-label chest X-ray image classification[J]. Cognitive Computation, 2022, 14 (4): 1362- 1377
doi: 10.1007/s12559-022-10032-4
|
23 |
PAN X R, GE C J, LU R, et al. On the integration of self-attention and convolution [C]// IEEE Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 805-815.
|
24 |
HU J, SHEN L, SU G. Squeeze-and-Excitation networks [C]// 31st IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132-7141.
|
25 |
LIN T, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42 (2): 318- 327
doi: 10.1109/TPAMI.2018.2858826
|
26 |
PASZKE A, GROSS S, MASSA F, et al. PyTorch: an imperative style, high-performance deep learning library [C]// 33rd Conference on Neural Information Processing Systems . Vancouver: [s. n. ], 2019: 32.
|
27 |
PHAM H H, LE T T, TRAN D Q, et al. Interpreting chest X-rays via CNNs that exploit hierarchical disease dependencies and uncertainty labels[J]. Neurocomputing, 2021, 437: 186- 194
doi: 10.1016/j.neucom.2020.03.127
|
28 |
JIANG X B, ZHU Y, LIU Y T, et al TransDD: a transformer-based dual-path decoder for improving the performance of thoracic diseases classification using chest X-ray[J]. Biomedical Signal Processing and Control, 2024, 91: 13
|
29 |
ZHU X F, PANG S M, ZHANG X X, et al. PCAN: pixel-wise classification and attention network for thoracic disease classification and weakly supervised localization[J]. Computerized Medical Imaging and Graphics, 2022, 102: 102137
doi: 10.1016/j.compmedimag.2022.102137
|
30 |
SUN Z X, QU L H, LUO J Z, et al Label correlation transformer for automated chest X-ray diagnosis with reliable interpretability[J]. Radiologia Medica, 2023, 128 (6): 726- 733
doi: 10.1007/s11547-023-01647-0
|
31 |
LEE Y W, HUANG S K, CHANG R F CheXGAT: a disease correlation-aware network for thorax disease diagnosis from chest X-ray images[J]. Artificial Intelligence in Medicine, 2022, 132: 102382
doi: 10.1016/j.artmed.2022.102382
|
32 |
XIAO J F, BAI Y T, YUILLE A, et al. Delving into masked autoencoders for multi-label thorax disease classification [C]// IEEE/CVF Winter Conference on Applications of Computer Vision. Waikoloa: IEEE, 2023: 3577-3589.
|
33 |
LIU Z, CHENG Y Z, TAMURA S Multi-label local to global learning: a novel learning paradigm for chest x-ray abnormality classification[J]. IEEE Journal of Biomedical and Health Informatics, 2023, 27 (9): 4409- 4420
doi: 10.1109/JBHI.2023.3281466
|
34 |
ZHU X F, FENG Q. MVC-NET: multi-view chest radiograph classification network with deep fusion [C]// 18th IEEE International Symposium on Biomedical Imaging. Nice: IEEE, 2021: 554-558.
|
35 |
JACENKOW G, O'NEIL A Q, TSAFTARIS S A. Indication as prior knowledge for multimodal disease classification in chest radiographs with transformers [C]// IEEE International Symposium on Biomedical Imaging. Kolkata: IEEE, 2022.
|
36 |
SEIBOLD C, REISS S, SARFRAZ M S, et al. Breaking with fixed set pathology recognition through report-guided contrastive training [C]// Medical Image Computing and Computer Assisted Intervention. Singapore: Springer, 2022, 13435: 690-700.
|
37 |
CHEN B, LI J, LU G, et al Label co-occurrence learning with graph convolutional networks for multi-label chest x-ray image classification[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 24 (8): 2292- 2302
doi: 10.1109/JBHI.2020.2967084
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|