动力工程 |
|
|
|
|
基于多通道振动主元特征的风电机组叶片自监督异常识别方法 |
王博特1,王卿1,2,*,刘强1,金波1 |
1. 浙江华东测绘与工程安全技术有限公司,浙江 杭州 310014 2. 中国电建集团华东勘测设计研究院有限公司,浙江 杭州 310014 |
|
Self-supervised anomaly recognition method for wind turbine blade based on multi-channel vibration principal features |
Bote WANG1,Qing WANG1,2,*,Qiang LIU1,Bo JIN1 |
1. Zhejiang Huadong Mapping and Engineering Safety Technology Co. Ltd, Hangzhou 310014, China 2. POWERCHINA Huadong Engineering Co. Ltd, Hangzhou 310014, China |
引用本文:
王博特,王卿,刘强,金波. 基于多通道振动主元特征的风电机组叶片自监督异常识别方法[J]. 浙江大学学报(工学版), 2025, 59(3): 653-660.
Bote WANG,Qing WANG,Qiang LIU,Bo JIN. Self-supervised anomaly recognition method for wind turbine blade based on multi-channel vibration principal features. Journal of ZheJiang University (Engineering Science), 2025, 59(3): 653-660.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.03.023
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I3/653
|
1 |
Global Wind Energy Council. Global wind report 2023 [EB/OL]. (2023-12-12)[2023-12-30]. https://gwec.net/globalwindreport2023/.
|
2 |
REZAMAND M, KORDESTANI M, CARRIVEAU R, et al Critical wind turbine components prognostics: a comprehensive review[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69 (12): 9306- 9328
doi: 10.1109/TIM.2020.3030165
|
3 |
SHEN Y, CHEN B, GUO F, et al A modified deep convolutional subdomain adaptive network method for fault diagnosis of wind turbine systems[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 71
|
4 |
QU Y, HE D, YOON J, et al Gearbox tooth cut fault diagnostics using acoustic emission and vibration sensors: a comparative study[J]. Sensors, 2014, 14 (1): 1372- 1393
doi: 10.3390/s140101372
|
5 |
ABOUHNIK A, ALBARBAR A Wind turbine blades condition assessment based on vibration measurements and the level of an empirically decomposed feature[J]. Energy Conversion and Management, 2012, 64: 606- 613
doi: 10.1016/j.enconman.2012.06.008
|
6 |
QIAN M, WU H, LI Y F Wind turbine blade early fault detection with faulty label unknown and labeling bias[J]. IEEE Transactions on Industrial Informatics, 2023, 19 (7): 8116- 8126
|
7 |
ZHAO S, XIA J, DENG R, et al Dual-triggered adaptive torque control strategy for variable-speed wind turbine against denial-of-service attacks[J]. IEEE Transactions on Smart Grid, 2023, 14 (4): 3072- 3084
|
8 |
KUSIAK A, ZHANG Z, VERMA A Prediction, operations, and condition monitoring in wind energy[J]. Energy, 2013, 60: 1- 12
doi: 10.1016/j.energy.2013.07.051
|
9 |
HABIBI H, CHENG L, ZHENG H, et al A dual de-icing system for wind turbine blades combining high-power ultrasonic guided waves and low-frequency forced vibrations[J]. Renewable Energy, 2015, 83: 859- 870
doi: 10.1016/j.renene.2015.05.025
|
10 |
TANG J, SOUA S, MARES C, et al An experimental study of acoustic emission methodology for in service condition monitoring of wind turbine blades[J]. Renewable Energy, 2016, 99: 170- 179
doi: 10.1016/j.renene.2016.06.048
|
11 |
YANG R, HE Y, MANDELIS A, et al Induction infrared thermography and thermal-wave-radar analysis for imaging inspection and diagnosis of blade composites[J]. IEEE Transactions on Industrial Informatics, 2018, 14 (12): 5637- 5647
doi: 10.1109/TII.2018.2834462
|
12 |
ZHOU H, ZHANG S, PENG J, et al. Informer: beyond efficient transformer for long sequence time-series forecasting [C]// Proceedings of the AAAI Conference on Artificial Intelligence . [s. l.]: AAAI, 2021, 35: 11106–11115.
|
13 |
ZHOU T, MA Z, WEN Q, et al. Fedformer: frequency enhanced decomposed transformer for long-term series forecasting [C]// International Conference on Machine Learning . Baltimore: PMLR, 2022, 162: 27268−27286.
|
14 |
YANG L, ZHANG Z A conditional convolutional autoencoder-based method for monitoring wind turbine blade breakages[J]. IEEE Transactions on Industrial Informatics, 2021, 17 (9): 6390- 6398
|
15 |
WANG A, PEI Y, QIAN Z, et al A two-stage anomaly decomposition scheme based on multi-variable correlation extraction for wind turbine fault detection and identification[J]. Applied Energy, 2022, 321: 119373
doi: 10.1016/j.apenergy.2022.119373
|
16 |
WANG L, ZHANG Z, XU J, et al Wind turbine blade breakage monitoring with deep autoencoders[J]. IEEE Transactions on Smart Grid, 2018, 9 (4): 2824- 2833
|
17 |
VASWANI A, SHAZEER N, PARMAR N, et al Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017, 30: 6000- 6010
|
18 |
ZHANG X, HE C, LU Y, et al Fault diagnosis for small samples based on attention mechanism[J]. Measurement, 2022, 187: 110- 242
|
19 |
LIU G, SI J, MENG W, et al Wind turbine fault detection with multi-module feature extraction network and adaptive strategy[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 72
|
20 |
DRAGOMIRETSKIY K, ZOSSO D Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62 (3): 531- 544
|
21 |
SCHÖLKOPF B, SMOLA A, MÜLLER K Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Computation, 1998, 10 (5): 1299- 1319
doi: 10.1162/089976698300017467
|
22 |
BOYD S, PARIKH N, CHU E, et al Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends® in Machine Learning, 2011, 3 (1): 1- 122
|
23 |
DE MAESSCHALCK R, JOUAN-RIMBAUD D, MASSART D L The mahalanobis distance[J]. Chemometrics and Intelligent Laboratory Systems, 2000, 50 (1): 1- 18
doi: 10.1016/S0169-7439(99)00047-7
|
24 |
CHUNG J, GULCEHRE C, CHO K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling [EB/OL]. (2014-12-11)[2021-01-01]. https://doi.org/10.48550/arXiv.1412.3555.
|
25 |
PUKELSHEIM F The three sigma rule[J]. The American Statistician, 1994, 48 (2): 88- 91
doi: 10.1080/00031305.1994.10476030
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|