Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (3): 653-660    DOI: 10.3785/j.issn.1008-973X.2025.03.023
动力工程     
基于多通道振动主元特征的风电机组叶片自监督异常识别方法
王博特1,王卿1,2,*,刘强1,金波1
1. 浙江华东测绘与工程安全技术有限公司,浙江 杭州 310014
2. 中国电建集团华东勘测设计研究院有限公司,浙江 杭州 310014
Self-supervised anomaly recognition method for wind turbine blade based on multi-channel vibration principal features
Bote WANG1,Qing WANG1,2,*,Qiang LIU1,Bo JIN1
1. Zhejiang Huadong Mapping and Engineering Safety Technology Co. Ltd, Hangzhou 310014, China
2. POWERCHINA Huadong Engineering Co. Ltd, Hangzhou 310014, China
 全文: PDF(1029 KB)   HTML
摘要:

为了解决风电机组叶片部件异常状态难以及时和有效识别的问题,提出基于多通道振动主元特征的风电机组叶片自监督异常识别方法. 在振动特征构建过程中,采用变分模态分解-核主成分分析(VMD-kPCA)方法实现对机舱多通道振动数据的特征自适应提取;通过融合机舱振动与机组运行数据(SCADA),使用自适应双向时序卷积网络(ABT)作为骨干特征提取器,实现振动主元特征的自监督回归;基于其他SCADA运行变量构建风电机组正常行为模型,排除其他因素在机舱振动特征上的干扰;采用基于马氏距离的残差序列检出策略实现高精度叶片异常识别. 在实验验证方面,使用某龙头公司风电场的实际数据集进行算法性能测试,结果表明,本研究所提模型对叶片结冰、叶片震荡、叶片扫塔3种异常检测的准确率均高于90%,优于其他对比模型.

关键词: 风电机组叶片异常识别振动特征提取时序卷积网络信号分解    
Abstract:

A self-supervised anomaly recognition method for wind turbine blades based on multi-channel vibration principal features was proposed, to address the difficulties in the timely and effective identification of abnormal states of wind turbine blade components. In the process of vibration feature construction, the variational mode decomposition-kernel principal component analysis (VMD-kPCA) method was proposed to achieve adaptive feature extraction of multi-channel vibration data in the nacelle. An adaptive bidirectional time-series convolutional network (ABT) was used as the backbone feature extractor to achieve self-supervised regression of vibration principal features, by integrating nacelle vibration with supervisory control and data acquisition (SCADA). A normal behavior model for wind turbine units was constructed based on other SCADA operational variables to eliminate the interference from other factors on the nacelle vibration features. High-precision blade anomaly identification was achieved using a residual sequence detection strategy based on the Mahalanobis distance. In terms of experimental validation, an actual dataset from a leading wind farm company was utilized to test the algorithm’s performance. Results showed that the proposed model had an accuracy rate higher than 90% for detecting three types of abnormalities: blade icing, blade oscillation, and blade tower sweeping, which was superior to other comparative models.

Key words: wind turbine    blade anomaly detection    vibration characteristic extraction    temporal convolutional network    signal decomposition
收稿日期: 2024-01-02 出版日期: 2025-03-10
CLC:  TK 83  
基金资助: 中国博士后科学基金资助项目(2023M743311);浙江华东测绘与工程安全技术有限公司科技资助项目(ZKY2023-CA-01-01).
通讯作者: 王卿   
作者简介: 王博特(1989—),男,高级工程师,本科,从事海上风电结构安全监测研究. E-mail:wang_bt@hdec.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王博特
王卿
刘强
金波

引用本文:

王博特,王卿,刘强,金波. 基于多通道振动主元特征的风电机组叶片自监督异常识别方法[J]. 浙江大学学报(工学版), 2025, 59(3): 653-660.

Bote WANG,Qing WANG,Qiang LIU,Bo JIN. Self-supervised anomaly recognition method for wind turbine blade based on multi-channel vibration principal features. Journal of ZheJiang University (Engineering Science), 2025, 59(3): 653-660.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.03.023        https://www.zjujournals.com/eng/CN/Y2025/V59/I3/653

图 1  机舱加速度振动主元特征提取
图 2  自适应双向时序卷积网络
图 3  振动主元自监督回归
图 4  风电机组正常行为模型
变量名单位变量名单位变量名单位
实时风速m/s桨距角1(°)叶片1电机电流A
发电机转速r/min桨距角2(°)叶片2电机电流A
3 s平均测量功率kW桨距角3(°)叶片3电机电流A
对风误差(°)叶片位置1(°)左右加速度1m/s2
风向(°)叶片位置2(°)前后加速度1m/s2
机舱温度°C叶片位置3(°)左右加速度2m/s2
环境温度°C叶片1电机温度°C前后加速度2m/s2
风轮转速r/min叶片2电机温度°C
机舱位置(°)叶片3电机温度°C
表 1  SCADA相关变量点表
图 5  叶片扫塔后出现的低频振荡特征
图 6  机扫塔后的低频振荡特征频谱图
模型名称MSEMAERMSE
SVR0.05740.17840.2396
MLP0.02620.11620.1619
GRU0.03340.12260.1829
Transformer0.01030.09200.1147
ABT-AK0.01410.10470.1433
ABT-BD0.00890.08810.0974
ABT0.00540.05230.0728
表 2  不同模型振动主元特征回归性能对比
框架名称Acc/%
叶片结冰叶片震荡叶片扫塔
自编码器44.2381.7288.71
振动有效值预测37.9864.1571.60
二分类器15.0133.2541.89
FFT-PCA76.6084.3287.42
USAD58.7479.4394.62
本模型框架91.2996.0496.73
表 3  不同异常识别框架下的叶片异常识别准确率对比
消融组回归MAEAcc/%
叶片结冰叶片震荡叶片扫塔
1)0.476 045.7777.5783.64
2)0.104 080.6284.7490.26
3)0.052387.4593.6094.24
4)0.052386.1492.3389.20
本模型0.052391.2996.0496.73
表 4  本模型异常识别框架消融实验对比
1 Global Wind Energy Council. Global wind report 2023 [EB/OL]. (2023-12-12)[2023-12-30]. https://gwec.net/globalwindreport2023/.
2 REZAMAND M, KORDESTANI M, CARRIVEAU R, et al Critical wind turbine components prognostics: a comprehensive review[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69 (12): 9306- 9328
doi: 10.1109/TIM.2020.3030165
3 SHEN Y, CHEN B, GUO F, et al A modified deep convolutional subdomain adaptive network method for fault diagnosis of wind turbine systems[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 71
4 QU Y, HE D, YOON J, et al Gearbox tooth cut fault diagnostics using acoustic emission and vibration sensors: a comparative study[J]. Sensors, 2014, 14 (1): 1372- 1393
doi: 10.3390/s140101372
5 ABOUHNIK A, ALBARBAR A Wind turbine blades condition assessment based on vibration measurements and the level of an empirically decomposed feature[J]. Energy Conversion and Management, 2012, 64: 606- 613
doi: 10.1016/j.enconman.2012.06.008
6 QIAN M, WU H, LI Y F Wind turbine blade early fault detection with faulty label unknown and labeling bias[J]. IEEE Transactions on Industrial Informatics, 2023, 19 (7): 8116- 8126
7 ZHAO S, XIA J, DENG R, et al Dual-triggered adaptive torque control strategy for variable-speed wind turbine against denial-of-service attacks[J]. IEEE Transactions on Smart Grid, 2023, 14 (4): 3072- 3084
8 KUSIAK A, ZHANG Z, VERMA A Prediction, operations, and condition monitoring in wind energy[J]. Energy, 2013, 60: 1- 12
doi: 10.1016/j.energy.2013.07.051
9 HABIBI H, CHENG L, ZHENG H, et al A dual de-icing system for wind turbine blades combining high-power ultrasonic guided waves and low-frequency forced vibrations[J]. Renewable Energy, 2015, 83: 859- 870
doi: 10.1016/j.renene.2015.05.025
10 TANG J, SOUA S, MARES C, et al An experimental study of acoustic emission methodology for in service condition monitoring of wind turbine blades[J]. Renewable Energy, 2016, 99: 170- 179
doi: 10.1016/j.renene.2016.06.048
11 YANG R, HE Y, MANDELIS A, et al Induction infrared thermography and thermal-wave-radar analysis for imaging inspection and diagnosis of blade composites[J]. IEEE Transactions on Industrial Informatics, 2018, 14 (12): 5637- 5647
doi: 10.1109/TII.2018.2834462
12 ZHOU H, ZHANG S, PENG J, et al. Informer: beyond efficient transformer for long sequence time-series forecasting [C]// Proceedings of the AAAI Conference on Artificial Intelligence . [s. l.]: AAAI, 2021, 35: 11106–11115.
13 ZHOU T, MA Z, WEN Q, et al. Fedformer: frequency enhanced decomposed transformer for long-term series forecasting [C]// International Conference on Machine Learning . Baltimore: PMLR, 2022, 162: 27268−27286.
14 YANG L, ZHANG Z A conditional convolutional autoencoder-based method for monitoring wind turbine blade breakages[J]. IEEE Transactions on Industrial Informatics, 2021, 17 (9): 6390- 6398
15 WANG A, PEI Y, QIAN Z, et al A two-stage anomaly decomposition scheme based on multi-variable correlation extraction for wind turbine fault detection and identification[J]. Applied Energy, 2022, 321: 119373
doi: 10.1016/j.apenergy.2022.119373
16 WANG L, ZHANG Z, XU J, et al Wind turbine blade breakage monitoring with deep autoencoders[J]. IEEE Transactions on Smart Grid, 2018, 9 (4): 2824- 2833
17 VASWANI A, SHAZEER N, PARMAR N, et al Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017, 30: 6000- 6010
18 ZHANG X, HE C, LU Y, et al Fault diagnosis for small samples based on attention mechanism[J]. Measurement, 2022, 187: 110- 242
19 LIU G, SI J, MENG W, et al Wind turbine fault detection with multi-module feature extraction network and adaptive strategy[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 72
20 DRAGOMIRETSKIY K, ZOSSO D Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62 (3): 531- 544
21 SCHÖLKOPF B, SMOLA A, MÜLLER K Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Computation, 1998, 10 (5): 1299- 1319
doi: 10.1162/089976698300017467
22 BOYD S, PARIKH N, CHU E, et al Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends® in Machine Learning, 2011, 3 (1): 1- 122
23 DE MAESSCHALCK R, JOUAN-RIMBAUD D, MASSART D L The mahalanobis distance[J]. Chemometrics and Intelligent Laboratory Systems, 2000, 50 (1): 1- 18
doi: 10.1016/S0169-7439(99)00047-7
24 CHUNG J, GULCEHRE C, CHO K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling [EB/OL]. (2014-12-11)[2021-01-01]. https://doi.org/10.48550/arXiv.1412.3555.
25 PUKELSHEIM F The three sigma rule[J]. The American Statistician, 1994, 48 (2): 88- 91
doi: 10.1080/00031305.1994.10476030
[1] 王子骏,庄可好,辛焕海,孙大卫,吴林林,王潇. 自同步型直驱风电机组暂态稳定分析[J]. 浙江大学学报(工学版), 2024, 58(4): 867-878.
[2] 白聪儿,孙哲杰,秦美娟,王潇,刘勇. 风电机组传动链动力响应特性与支撑系统影响[J]. 浙江大学学报(工学版), 2023, 57(6): 1165-1174.
[3] 陈棋,李丹阳,刘宏伟,林勇刚,李伟,丁京龙. 风电机组传动链地面测试系统载荷模拟技术[J]. 浙江大学学报(工学版), 2021, 55(2): 299-306.