Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (3): 643-652    DOI: 10.3785/j.issn.1008-973X.2025.03.022
动力工程     
计及高背压改造机组动态特性的厂级负荷分配
章艳1(),李佳丽1,2,张莹3,苏子航1,陈筑4,韩旭4,吕泉1
1. 大连理工大学 电气工程学院,辽宁 大连 116024
2. 国家电网杭州供电公司,浙江 杭州 310016
3. 中国电力工程顾问集团 东北电力设计院有限公司,吉林 长春 130000
4. 华能大连电厂,辽宁 大连 116113
Plant-level load distribution considering dynamic characteristics of high back-pressure retrofit unit
Yan ZHANG1(),Jiali LI1,2,Ying ZHANG3,Zihang SU1,Zhu CHEN4,Xu HAN4,Quan LV1
1. College of Electrical Engineering, Dalian University of Technology, Dalian 116024, China
2. State Grid Hangzhou Power Supply Company, Hangzhou 310016, China
3. Northeast Electric Power Design Institute Co. Ltd, China Power Engineering Consulting Group, Changchun 130000, China
4. Huaneng Dalian Power Plant, Dalian 116113, China
 全文: PDF(1362 KB)   HTML
摘要:

探讨湿冷高背压改造机组热网质-量并调时的动态电热运行特性,并将其应用于热电厂优化运行. 利用Ebsilon对亚临界高背压供热改造机组进行仿真建模. 通过变工况计算,分析纯背压、抽背2种典型工况下主蒸汽质量流量、抽汽质量流量对电-热关系的影响,从而明确机组电-热可行运行区间. 针对机组实际运行时主要采用纯背压工况运行的现状,探究并量化热网质-量并调时的循环水质量流量与循环水入口温度变化对电-热关系斜率以及电热运行范围的影响,为电厂的精细化运行提供模型工具. 基于实际热电厂运行数据校验上述模型的可靠性,并探讨考虑机组动态特性对厂级负荷分配的节煤效果. 算例结果表明,当湿冷高背压机组协同抽凝机组共同参与厂级负荷分配时,考虑动态特性的可行域模型相比于传统线性模型,能够更准确地映射实际机组的电热关系,350 MW机组在相同供热功率下,发电功率的变化范围扩大约2.37~4.24 MW,负荷分配结果的经济性更优.

关键词: 厂级负荷分配高背压改造机组动态电热特性可行运行区间精细化建模    
Abstract:

The dynamic electro-thermal operating characteristics of the quality-volume regulation in the wet-cooled high back-pressure retrofit unit were investigated, and the results were applied to the optimization of thermal power plant operation. The subcritical high back-pressure retrofit unit for heat supply was simulated and modeled using the Ebsilon software. By performing calculations under various operating conditions, the influences of main steam mass flow rate and extraction steam mass flow rate on the electro-thermal relationship were analyzed for two typical operating modes, i.e., pure back-pressure and extraction back-pressure. The objective was to determine the feasible operating region of the unit in terms of the electric-thermal relationship. In consideration of the unit’s actual operation primarily in pure back-pressure mode, the influences of the circulating water mass flow rate and inlet temperature change on the slope and operation range of the electro-thermal relationship during the quality-volume regulation of the heat network were further explored and quantified. This refined modeling approach provides a valuable tool for optimizing the operation of thermal power plants. Finally, the reliability of the above model was verified using actual operational data from a thermal power plant, and the coal-saving effect considering the dynamic characteristics of the unit on the plant-level load distribution was explored. The case calculation results showed that when the wet-cooled high back-pressure unit cooperated with condensing units to level the load distribution in plant, the feasible operation region model considering dynamic characteristics could map the power-heat relationship of the unit more accurately compared to the traditional linear model. The range of power generation for a 350 MW unit was expanded by approximately 2.37?4.24 MW under the same heating power, resulting in better economic efficiency of load distribution results.

Key words: plant-level load distribution    high back-pressure retrofit unit    dynamic electro-thermal characteristics    feasible operation region    refined modeling
收稿日期: 2024-02-05 出版日期: 2025-03-10
CLC:  TM 611  
基金资助: 国家自然科学基金资助项目(51607021).
作者简介: 章艳(1980—),女,副教授,博士,从事电力系统经济运行与调度研究. orcid.org/0000-0001-9043-0300. E-mail:zy@dlut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
章艳
李佳丽
张莹
苏子航
陈筑
韩旭
吕泉

引用本文:

章艳,李佳丽,张莹,苏子航,陈筑,韩旭,吕泉. 计及高背压改造机组动态特性的厂级负荷分配[J]. 浙江大学学报(工学版), 2025, 59(3): 643-652.

Yan ZHANG,Jiali LI,Ying ZHANG,Zihang SU,Zhu CHEN,Xu HAN,Quan LV. Plant-level load distribution considering dynamic characteristics of high back-pressure retrofit unit. Journal of ZheJiang University (Engineering Science), 2025, 59(3): 643-652.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.03.022        https://www.zjujournals.com/eng/CN/Y2025/V59/I3/643

图 1  高背压机组结构图
图 2  高背压机组Ebsilon仿真计算模型
图 3  典型工况电-热关系
图 4  纯背压工况(非抽汽)工况下的电-热关系
图 5  发电功率与循环水出口温度线性关系的斜率与截距
图 6  循环水出口温度的最大值和最小值
序号a/(t·(MW2·h)?1)b/(t·(MW·h)?1)c/(t·h?1)cmcv
10.000 0980.299 611.807
2~40.000 0770.238 911.6160.419 60.248
表 1  机组煤耗系数
参数数值
机组额定出力/MW350
额定主蒸汽压力/MPa16.67
额定主蒸汽温度/℃538.0
额定蒸汽质量流量/(t·h–1)1 043.320
额定热再热蒸汽温度/℃538.0
额定给水温度/℃273.9
额定背压/kPa纯凝工况:4.9 高背压工况:54.0
抽汽压力/MPa0.35
表 2  高背压机组额定参数
序号$ {P_{{\text{max}}}}/{\mathrm{MW}} $$ {P_{{\text{min}}}}/{\mathrm{MW}} $$ {Q_{{\text{max}}}}/{\mathrm{MW}} $$ {Q_{{\text{min}}}}/{\mathrm{MW}} $$ {P_{{\text{Ex,0}}}}{\text{/MW}} $
1(模型1)295.8117.9469.7205.3
2~4350.0140.0359.20110.2
表 4  机组运行参数
机组工况qm/(t·h?1)e1/%θ/℃e2/%
试验值仿真值试验值仿真值
240 MW
高背压工况
877.451862.022?1.7674.974.7080.03
165 MW
高背压工况
597.345595.417?0.3268.067.939?0.27
110 MW
高背压工况
400.641394.697?1.4861.861.768?0.20
表 3  高背压机组设计值和仿真结果比较
图 7  日内电热负荷曲线
图 8  日内各时段循环水质量流量与循环水入口温度
图 9  模型1、2与实际发电功率比较
图 10  负荷分配方案
图 11  2种方案下高背压机组电热功率对比
图 12  各时段2种方案下厂总煤耗量
图 13  不同场景下的电、热负荷
图 14  各场景下厂日煤耗情况
图 15  高热负荷、无光有风场景下高背压机组运行点
1 李晖, 刘栋, 姚丹阳 面向碳达峰碳中和目标的我国电力系统发展研判[J]. 中国电机工程学报, 2021, 41 (18): 6245- 6258
LI Hui, LIU Dong, YAO Danyang Analysis and reflection on the development of power system towards the goal of carbon emission peak and carbon neutrality[J]. Proceedings of the CSEE, 2021, 41 (18): 6245- 6258
2 习近平. 继往开来, 开启全球应对气候变化新征程: 在气候雄心峰会上的讲话[N]. 中华人民共和国国务院公报, 2020-12-12(35).
3 张丽英, 叶廷路, 辛耀中, 等 大规模风电接入电网的相关问题及措施[J]. 中国电机工程学报, 2010, 30 (25): 1- 9
ZHANG Liying, YE Tinglu, XIN Yaozhong, et al Problems and measures of power grid accommodating large scale wind power[J]. Proceedings of the CSEE, 2010, 30 (25): 1- 9
4 吕泉, 胡炳廷, 王海霞, 等 风热冲突下热电厂供热问题研究[J]. 电力自动化设备, 2017, 37 (6): 236- 244
LV Quan, HU Bingting, WANG Haixia, et al Heat-supply of thermal power plant in wind-heat conflict[J]. Electric Power Automation Equipment, 2017, 37 (6): 236- 244
5 丁明, 刘新宇, 解蛟龙, 等 面向提高风电接纳能力的多区域热-电联合调度模型[J]. 中国电机工程学报, 2017, 37 (14): 4079- 4088
DING Ming, LIU Xinyu, XIE Jiaolong, et al Research on heat and electricity coordinated dispatch model of multi-area for improving wind power accommodation ability[J]. Proceedings of the CSEE, 2017, 37 (14): 4079- 4088
6 章艳, 吕泉, 张娜, 等 计及灵活性提升的热电厂日前市场竞价策略[J]. 电力系统自动化, 2021, 45 (6): 140- 147
ZHANG Yan, LV Quan, ZHANG Na, et al Bidding strategy of day-ahead market for combined heat and power plant considering flexibility improvement[J]. Automation of Electric Power Systems, 2021, 45 (6): 140- 147
7 LIU Z, KARIMI I, HE T A novel inlet air cooling system based on liquefied natural gas cold energy utilization for improving power plant performance[J]. Energy Conversion and Management, 2019, 187: 41- 52
doi: 10.1016/j.enconman.2019.03.015
8 SUN Y, GUAN Z, HOOMAN K A review on the performance evaluation of natural draft dry cooling towers and possible improvements via inlet air spray cooling[J]. Renewable and Sustainable Energy Reviews, 2017, 79: 618- 637
doi: 10.1016/j.rser.2017.05.151
9 戈志华, 孙诗梦, 万燕, 等 大型汽轮机组高背压供热改造适用性分析[J]. 中国电机工程学报, 2017, 37 (11): 3216- 3222
GE Zhihua, SUN Shimeng, WAN Yan, et al Applicability analysis of high back-pressure heating retrofit for large-scale steam turbine unit[J]. Proceedings of the CSEE, 2017, 37 (11): 3216- 3222
10 冯澎湃, 王宁玲, 杨志平, 等 直接空冷高背压供热机组的梯级供热特性与冷端变工况协同优化[J]. 中国电机工程学报, 2016, 36 (20): 5546- 5554
FENG Pengpai, WANG Ningling, YANG Zhiping, et al Cascade heating characteristics and off-design collaborative optimization of direct air-cooled high pressure heat supply power units[J]. Proceedings of the CSEE, 2016, 36 (20): 5546- 5554
11 杨志平, 冯澎湃, 王宁玲, 等 质-量并行调节下直接空冷高背压供热机组弹性运行与优化[J]. 中国电机工程学报, 2017, 37 (19): 5655- 5664
YANG Zhiping, FENG Pengpai, WANG Ningling, et al Flexible operation and optimization of direct air-cooled high pressure heat supply power units in quality-volume regulation[J]. Proceedings of the CSEE, 2017, 37 (19): 5655- 5664
12 余耀 空冷机组高背压供热与抽汽供热的热经济性比较[J]. 中国电力, 2016, 49 (9): 104- 108
YU Yao Thermal economics comparison between high back-pressure heating and extraction heating for a direct air-cooled power unit[J]. Electric Power, 2016, 49 (9): 104- 108
doi: 10.11930/j.issn.1004-9649.2016.09.104.05
13 张子倩, 张早校, 张强 干湿联合冷却系统技术发展现状及展望[J]. 化工进展, 2021, 40 (1): 21- 30
ZHANG Ziqian, ZHANG Zaoxiao, ZHANG Qiang Development status and prospect of dry and wet combined cooling system technology[J]. Chemical Industry and Engineering Progress, 2021, 40 (1): 21- 30
14 赵世飞. 燃煤高背压热电联产机组适用性研究[D]. 北京: 华北电力大学, 2019.
ZHAO Shifei. Adaption research on coal-fired combined heat and power plant with high back-pressure turbine [D]. Beijing: North China Electric Power University, 2019.
15 张尤俊, 戈志华, 庞敬帅, 等 集成蒸汽引射器热电联产余热供热系统全工况性能分析[J]. 动力工程学报, 2023, 43 (3): 380- 390
ZHANG Youjun, GE Zhihua, PANG Jingshuai, et al Performance analysis of the congeneration waste heat heating system intergrated with a steam ejector under full conditions[J]. Journal of Chinese Society of Power Engineering, 2023, 43 (3): 380- 390
16 吕凯, 李杰, 安江涛, 等 330 MW高背压供热机组热力特性研究[J]. 汽轮机技术, 2019, 61 (1): 59- 62
LV Kai, LI Jie, AN Jiangtao, et al Thermodynamic characteristics of a 330 MW unit with high back-pressure circulating water heating[J]. Turbine Technology, 2019, 61 (1): 59- 62
doi: 10.3969/j.issn.1001-5884.2019.01.017
17 江浩, 黄嘉驷, 王浩 200MW高背压循环水供热机组热力特性研究[J]. 热力发电, 2015, 44 (4): 17- 21
JIANG Hao, HUANG Jiasi, WANG Hao Thermodynamic characteristics of a 200 MW unit with high back pressure circulating water heating[J]. Thermal Power Generation, 2015, 44 (4): 17- 21
doi: 10.3969/j.issn.1002-3364.2015.04.017
18 周守军, 潘继红, 王庆峰, 等 城市集中供热系统一次网运行优化及算法[J]. 北京工业大学学报, 2012, 38 (4): 628- 635
ZHOU Shoujun, PAN Jihong, WANG Qingfeng, et al Primary network operational optimization and algorithm of a district heating system[J]. Journal of Beijing University of Technology, 2012, 38 (4): 628- 635
19 ZHAO S, WANG W, GE Z Thermodynamic, operational, and techno-economic analysis of the cascade heating system with a double-unit[J]. Energy Conversion and Management, 2020, 226: 113558
doi: 10.1016/j.enconman.2020.113558
20 WANG C, SONG J Optimal dispatch of the cascade heating CHP plants integrating with the high back-pressure technology[J]. Case Studies in Thermal Engineering, 2022, 38: 102330
doi: 10.1016/j.csite.2022.102330
21 杨海生, 古雨, 唐广通, 等 高背压-抽凝机组耦合运行优化技术对深度调峰性能影响及经济性分析[J]. 汽轮机技术, 2020, 62 (4): 305- 308
YANG Haisheng, GU Yu, TANG Guangtong, et al Effect of coupling operation optimization technology of high back pressure-condensing cogeneration unit on peak regulation performance and economic analysis[J]. Turbine Technology, 2020, 62 (4): 305- 308
doi: 10.3969/j.issn.1001-5884.2020.04.017
22 徐佳敏 深度调峰工况下600MW汽轮机低压缸流场数值计算与分析[J]. 汽轮机技术, 2020, 62 (3): 167- 169
XU Jiamin Numerical calculation and analysis of flow field of low pressure cylinder of 600MW steam turbine in depth peak load conditions[J]. Turbine Technology, 2020, 62 (3): 167- 169
doi: 10.3969/j.issn.1001-5884.2020.03.002
23 许朋江, 徐睿, 邓佳, 等 330 MW机组采暖抽汽对发电热经济性的影响分析[J]. 中国电机工程学报, 2020, 40 (19): 6257- 6263
XU Pengjiang, XU Rui, DENG Jia, et al Analysis of the influence of heating steam extraction of 330 MW unit on the economy of electric generation[J]. Proceedings of the CSEE, 2020, 40 (19): 6257- 6263
24 姚纪伟, 邵峰, 谭锐 高背压供热机组全厂负荷优化调度的试验研究[J]. 汽轮机技术, 2019, 61 (5): 371- 374
YAO Jiwei, SHAO Feng, TAN Rui Experimental research on load optimal scheduling of high back pressure heating steam turbine units[J]. Turbine Technology, 2019, 61 (5): 371- 374
25 张玉, 邵睿, 李凌 发电机组凝汽器背压的优化计算[J]. 上海理工大学学报, 2018, 40 (5): 429- 434
ZHANG Yu, SHAO Rui, LI Ling Optimization calculation of condenser backpressure in a generator unit[J]. Journal of University of Shanghai for Science and Technology, 2018, 40 (5): 429- 434
26 胡波, 陈俊, 杨柳, 等 全国产分散控制系统开发与应用[J]. 热力发电, 2022, 51 (3): 159- 165
HU Bo, CHEN Jun, YANG Liu, et al Development and application of fully domestic distributed control system[J]. Thermal Power Generation, 2022, 51 (3): 159- 165
27 卢化, 蔡钧宇, 蔡萍萍, 等 国产分散控制系统主要性能测试对比[J]. 热力发电, 2022, 51 (3): 191- 198
LU Hua, CAI Junyu, CAI Pingping, et al Comparisive test of main performance of domestic distributed control system[J]. Thermal Power Generation, 2022, 51 (3): 191- 198
28 张月雷, 王贵生, 管洪军, 等 300 MW热电机组凝汽器变工况运行的热经济性模拟研究[J]. 汽轮机技术, 2023, 65 (5): 377- 381
ZHANG Yuelei, WANG Guisheng, GUAN Hongjun, et al Thermal economy simulation study on the variable condition operation of a 300 MW thermoelectric unit’s condenser[J]. Turbine Technology, 2023, 65 (5): 377- 381
doi: 10.3969/j.issn.1001-5884.2023.05.017
[1] 王光烛,陈坚红,洪细良,王小荣,陈强峰,盛德仁,李蔚. 联合循环发电系统全生命周期?环境学评估[J]. 浙江大学学报(工学版), 2019, 53(5): 972-980.
[2] 李鸿坤,陈坚红,盛德仁,李蔚. 联合循环机组热经济学H&S方法建模及性能评价[J]. 浙江大学学报(工学版), 2016, 50(1): 116-122.
[3] 姚华,盛德仁,林张新,宋思远,陈坚红,李蔚. 炼铁伴生能源联合循环系统热力学性能分析[J]. J4, 2011, 45(11): 2008-2013.