|
|
面向点云理解的双邻域图卷积方法 |
李宗民1,2( ),徐畅1,白云1,鲜世洋1,戎光彩1 |
1. 中国石油大学(华东) 青岛软件学院 计算机科学与技术学院,山东 青岛 266580 2. 青岛滨海学院 信息工程学院,山东 青岛 266580 |
|
Dual-neighborhood graph convolution method for point cloud understanding |
Zongmin LI1,2( ),Chang XU1,Yun BAI1,Shiyang XIAN1,Guangcai RONG1 |
1. College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum (East China), Qingdao 266580, China 2. Information Engineering College, Qingdao Binhai University, Qingdao 266580, China |
引用本文:
李宗民,徐畅,白云,鲜世洋,戎光彩. 面向点云理解的双邻域图卷积方法[J]. 浙江大学学报(工学版), 2025, 59(5): 879-889.
Zongmin LI,Chang XU,Yun BAI,Shiyang XIAN,Guangcai RONG. Dual-neighborhood graph convolution method for point cloud understanding. Journal of ZheJiang University (Engineering Science), 2025, 59(5): 879-889.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.05.001
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I5/879
|
1 |
JABOVEDOFF M, OPPIKOFER T, ABELLÁN A, et al Use of LIDAR in landslide investigations: a review[J]. Natural Hazards, 2012, 61 (1): 5- 28
doi: 10.1007/s11069-010-9634-2
|
2 |
RUSU R B, MARTON Z C, BLODOW N, et al Towards 3D point cloud based object maps for household environments[J]. Robotics and Autonomous Systems, 2008, 56 (11): 927- 941
doi: 10.1016/j.robot.2008.08.005
|
3 |
QI C R, LIU W, WU C, et al. Frustum pointnets for 3d object detection from rgb-d data [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Salt Lake City: IEEE, 2018: 918-927.
|
4 |
FAN H, SU H, GUIBAS L J. A point set generation network for 3d object reconstruction from a single image [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Honolulu: IEEE, 2017: 605-613.
|
5 |
SU H, MAJI S, KALOGERAKIS E, et al. Multi-view convolutional neural networks for 3d shape recognition [C]// Proceedings of the IEEE International Conference on Computer Vision . Santiago: IEEE, 2015: 945-953.
|
6 |
LI Y, PIRK S, SU H, et al Fpnn: field probing neural networks for 3d data[J]. Advances in Neural Information Processing Systems, 2016, 29: 307- 315
|
7 |
QI C R, SU H, MO K, et al. Pointnet: deep learning on point sets for 3d classification and segmentation [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Honolulu: IEEE, 2017: 652-660.
|
8 |
QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space [C] // Proceedings of the 30th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2017: 5099-5108.
|
9 |
LIU Y C, FAN B, XIANG S M, et al. Relation-shape convolutional neural network for point cloud analysis [C] // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 8895–8904.
|
10 |
HU Q Y, YANG B, XIE L H, et al. Randla-net: efficient semantic segmentation of large-scale point clouds [C] // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Seattle: IEEE, 2020: 11108–11117.
|
11 |
YAN X, ZHENG C, LI Z, et al. Pointasnl: robust point clouds processing using nonlocal neural networks with adaptive sampling [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Seattle: IEEE, 2020: 5589-5598.
|
12 |
ZHAO H, JIANG L, FU C W, et al. Pointweb: enhancing local neighborhood features for point cloud processing [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Long Beach: IEEE, 2019: 5565-5573.
|
13 |
WANG Y, SUN Y, LIU Z, et al Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 2019, 38 (5): 1- 12
|
14 |
SIMONOVSKY M, KOMODAKIS N. Dynamic edge-conditioned filters in convolutional neural networks on graphs [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Honolulu: IEEE, 2017: 3693-3702.
|
15 |
LIU Z, ZHOU S, SUO C, et al. Lpd-net: 3d point cloud learning for large-scale place recognition and environment analysis [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision . Seoul: IEEE, 2019: 2831-2840.
|
16 |
LAI X, LIU J, JIANG L, et al. Stratified transformer for 3d point cloud segmentation [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . New Orleans: IEEE, 2022: 8500-8509.
|
17 |
WU W, QI Z, FUXIN L. Pointconv: deep convolutional networks on 3d point clouds [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Long Beach: IEEE, 2019: 9621-9630.
|
18 |
THOMAS H, QI C R, DESCHAUD J E, et al. Kpconv: flexible and deformable convolution for point clouds [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 6411-6420.
|
19 |
XU M, DING R, ZHAO H, et al. Paconv: position adaptive convolution with dynamic kernel assembling on point clouds [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Nashville: IEEE, 2021: 3173-3182.
|
20 |
QIU S, ANWAR S, BARNES N Geometric back-projection network for point cloud classification[J]. IEEE Transactions on Multimedia, 2021, 24: 1943- 1955
|
21 |
RAN H, LIU J, WANG C. Surface representation for point clouds [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 18942-18952.
|
22 |
ZHANG R, WANG L, WANG Y, et al. Starting from non-parametric networks for 3D point cloud analysis [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 5344-5353.
|
23 |
CHEN B, XIA Y, ZANG Y, et al. Decoupled local aggregation for point cloud learning [EB/OL]. (2023-08-31). https://doi.org/10.48550/arXiv.2308.16532.
|
24 |
DEFFERRARD M, BRESSON X, VANDERGHEYNST P Convolutional neural networks on graphs with fast localized spectral filtering[J]. Advances in Neural Information Processing Systems, 2016, 29: 3844- 3852
|
25 |
LI G, MULLER M, THABET A, et al. Deepgcns: can gcns go as deep as cnns? [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul: IEEE 2019: 9267-9276.
|
26 |
LIN Z H, HUANG S Y, WANG Y C F. Convolution in the cloud: learning deformable kernels in 3d graph convolution networks for point cloud analysis [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Seattle: IEEE, 2020: 1800-1809.
|
27 |
XU M, ZHOU Z, QIAO Y. Geometry sharing network for 3d point cloud classification and segmentation [C]// Proceedings of the AAAI Conference on Artificial Intelligence . Palo Alto: AAAI Press, 2020, 34(7): 12500-12507.
|
28 |
ZHOU H, FENG Y, FANG M, et al. Adaptive graph convolution for point cloud analysis [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision . Montreal: IEEE, 2021: 4965-4974.
|
29 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems . Long Beach: Curran Associates Inc., 2017: 6000-6010.
|
30 |
GUO M H, CAI J X, LIU Z N, et al Pct: Point cloud transformer[J]. Computational Visual Media, 2021, 7 (2): 187- 199
doi: 10.1007/s41095-021-0229-5
|
31 |
ZHAO H, JIANG L, JIA J, et al. Point transformer [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 16259-16268.
|
32 |
PARK J, LEE S, KIM S, et al. Self-positioning point-based transformer for point cloud understanding [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Vancouver: IEEE, 2023: 21814-21823.
|
33 |
RAN H, ZHUO W, LIU J, et al. Learning inner-group relations on point clouds [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision . Montreal: IEEE, 2021: 15477-15487.
|
34 |
WU X Y, JIANG L, WANG P S, et al. Point Transformer V3: simpler, faster, stronger [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2024: 4840-4851.
|
35 |
WU Z, SONG S, KHOSLA A, et al. 3d shapenets: a deep representation for volumetric shapes [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE, 2015: 1912-1920.
|
36 |
UY M A, PHAM Q H, HUA B S, et al. Revisiting point cloud classification: a new benchmark dataset and classification model on real-world data [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 1588-1597.
|
37 |
YI L, KIM V G, CEYLAN D, et al A scalable active framework for region annotation in 3d shape collections[J]. ACM Transactions on Graphics, 2016, 35 (6): 1- 12
|
38 |
DAI A, CHANG A X, SAVVA M, et al. ScanNet: richly-annotated 3D reconstructions of indoor scenes [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2432-2443.
|
39 |
ARMENI I, SENER O, ZAMIR A R, et al. 3d semantic parsing of large-scale indoor spaces [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 1534-1543.
|
40 |
CHOE J, PARK C, RAMEAU F, et al. Pointmixer: Mlp-mixer for point cloud understanding [C]// European Conference on Computer Vision. Cham: Springer, 2022: 620-640.
|
41 |
MUZAHID A A M, WAN W, SOHEL F, et al CurveNet: curvature-based multitask learning deep networks for 3D object recognition[J]. IEEE/CAA Journal of Automatica Sinica, 2020, 8 (6): 1177- 1187
|
42 |
QIAN G, LI Y, PENG H, et al. Pointnext: revisiting pointnet++ with improved training and scaling strategies [J]. Advances in Neural Information Processing Systems , 2022: 23192-23204.
|
43 |
MONTANARO A, VALSESIA D, MAGLI E Rethinking the compositionality of point clouds through regularization in the hyperbolic space[J]. Advances in Neural Information Processing Systems, 2022, 35: 33741- 33753
|
44 |
LIU Y, TIAN B, LV Y, et al Point cloud classification using content-based transformer via clustering in feature space[J]. IEEE/CAA Journal of Automatica Sinica, 2023, 11: 231- 239
|
45 |
WOO S, LEE D, HWANG S, et al MKConv: multidimensional feature representation for point cloud analysis[J]. Pattern Recognition, 2023, 143: 109800
doi: 10.1016/j.patcog.2023.109800
|
46 |
MA X, QIN C, YOU H X, et al. Rethinking network design and local geometry in point cloud: a simple residual MLP framework [EB/OL]. (2022-02-15). https://doi.org/10.48550/arXiv.2202.07123.
|
47 |
ZEID K A, SCHULT J, HERMANS A, et al. Point2Vec for self-supervised representation learning on point clouds [C]// DAGM German Conference on Pattern Recognition . Cham: Springer, 2023: 131-146.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|