Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (4): 804-813    DOI: 10.3785/j.issn.1008-973X.2025.04.016
计算机技术与控制工程     
融合SAR的光学遥感影像双激活门控卷积厚云去除
杨金辉1(),高贤君1,*(),寇媛2,5,于盛妍3,许磊4,杨元维1
1. 长江大学 地球科学学院,湖北 武汉 430100
2. 湖南省第一测绘院 创新研发部,湖南 长沙 421001
3. 内蒙古自治区测绘地理信息中心,内蒙古自治区 呼和浩特 010050
4. 中国铁路设计集团有限公司,天津 300308
5. 实景三维建设与应用技术湖南省工程研究中心,湖南 长沙 421001
Dual-activation gated convolution with SAR fusion for thick cloud removal from optical remote sensing images
Jinhui YANG1(),Xianjun GAO1,*(),Yuan KOU2,5,Shengyan YU3,Lei XU4,Yuanwei YANG1
1. School of Geosciences, Yangtze University, Wuhan 430100, China
2. Innovation and Research Department, the First Surveying and Mapping Institute of Hunan Province, Changsha 421001, China
3. Inner Mongolia Autonomous Region Surveying and Mapping Geographic Information Center, Hohhot 010050, China
4. China Railway Design Corporation, Tianjin 300308, China
5. Hunan Engineering Research Center of 3D Real Scene Construction and Application Technology, Changsha 421001, China
 全文: PDF(4312 KB)   HTML
摘要:

针对现有基于深度学习的去云方法性能不稳定、色调不均衡等问题,提出融合合成孔径雷达(SAR)和光学数据的遥感影像厚云去除网络. 利用SAR图像的真实纹理信息和光学图像的空谱特征信息,从全局和局部构建特征重建任务,引导网络重建云遮挡区域的缺失信息. 使用双激活门控卷积块和通道注意力块构建空谱特征推理重建模块,提高网络对非云区域有用信息的特征提取能力. 根据云形态和含云量不同将SEN12MS-CR-TS数据集拆分成4个子数据集进行训练和测试. 实验结果表明,此方法的峰值信噪比(PSNR)和结构相似性指数(SSIM)比去云效果最优的对比方法分别高出1.038 4 dB和0.091 5,说明融合SAR和光学数据的遥感影像厚云去除网络可有效去除影像中的云,并完成云下细节信息的重建.

关键词: 厚云去除SAR数据融合门控卷积双流引导    
Abstract:

A cloud removal network for remote sensing imagery that integrated synthetic aperture radar (SAR) and optical data was proposed to address the issues of unstable performance and uneven color tones in existing deep learning-based cloud removal methods. The true texture information from SAR images and the spatial-spectral feature information from optical images were used to construct feature reconstruction tasks both globally and locally, and these tasks guided the network to rebuild missing information in cloud-covered areas. The dual-activation gated convolutional blocks and the channel attention blocks were utilized to build a spatial-spectral feature inference and reconstruction block which significantly enhanced the network’s ability to extract features from useful information in non-cloud areas. The SEN12MS-CR-TS dataset was divided into four subsets based on different cloud morphologies and cloud contents for training and testing. The experimental results showed that the peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) of the proposed method were 1.038 4 dB and 0.091 5, respectively, which were higher than those of the best cloud removal methods. Thus the remote sensing image thick cloud removal network, which integrates SAR and optical data, can effectively remove clouds from images and reconstruct the details beneath the clouds.

Key words: thick cloud removal    SAR    data fusion    gated convolution    dual-flow guidance
收稿日期: 2024-08-18 出版日期: 2025-04-25
CLC:  P 237  
基金资助: 西藏自治区科技计划重大专项(XZ202402ZD0001);深地国家科技重大专项(2024ZD1001003);城市轨道交通数字化建设与测评技术国家工程实验室开放课题基金资助项目(2023ZH01);天津市科技计划项目(23YFYSHZ00190,23YFZCSN00280);湖南省自然科学基金项目部门联合基金资助项目(2024JJ8327).
通讯作者: 高贤君     E-mail: 2022710467@yangtzeu.edu.cn;junxgao@yangtzeu.edu.cn
作者简介: 杨金辉(1999—),男,硕士生,从事高分辨遥感影像智能解译研究. orcid.org/0009-0000-7744-2147. E-mail:2022710467@yangtzeu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
杨金辉
高贤君
寇媛
于盛妍
许磊
杨元维

引用本文:

杨金辉,高贤君,寇媛,于盛妍,许磊,杨元维. 融合SAR的光学遥感影像双激活门控卷积厚云去除[J]. 浙江大学学报(工学版), 2025, 59(4): 804-813.

Jinhui YANG,Xianjun GAO,Yuan KOU,Shengyan YU,Lei XU,Yuanwei YANG. Dual-activation gated convolution with SAR fusion for thick cloud removal from optical remote sensing images. Journal of ZheJiang University (Engineering Science), 2025, 59(4): 804-813.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.04.016        https://www.zjujournals.com/eng/CN/Y2025/V59/I4/804

图 1  遥感影像厚云去除网络总体结构图
图 2  空谱特征推理重建模块结构图
数据集类别x/%N
Thin_CI薄云x $< $ 104 849
Brok_CI碎云10 $\leqslant $ x $< $ 307 718
LBrok_CI大范围碎云30 $\leqslant $ x $< $ 605 823
Thick_CI厚云x $\geqslant $ 607 429
表 1  不同数据集的详细信息
图 3  不同方法在不同数据集上的去云结果对比
数据集方法PSNR/dBRMSESSIM
Thin_CISAR-opt-cGAN28.157 70.084 10.650 3
McGAN28.143 10.072 20.640 3
USSRN-CR29.195 50.073 80.706 4
本文方法29.880 30.068 40.793 4
Brok_CISAR-opt-cGAN28.157 60.105 20.629 8
McGAN28.291 60.098 20.634 7
USSRN-CR29.898 10.068 90.721 1
本文方法31.499 80.059 60.812 7
LBrok_CISAR-opt-cGAN28.105 90.087 80.566 4
McGAN28.200 40.100 10.560 8
USSRN-CR29.556 60.108 70.646 3
本文方法30.833 90.079 80.746 0
Thick_CISAR-opt-cGAN28.059 90.071 40.474 8
McGAN28.040 60.085 60.409 7
USSRN-CR28.846 40.077 90.583 7
本文方法29.436 40.072 90.671 3
表 2  不同方法在不同数据集上的定量评价结果
结构数据集PSNR/dBRMSESSIM
无全局特征引导Thin_CI29.132 10.076 40.755 0
Brok_CI30.210 10.079 20.780 1
LBrok_CI29.615 80.097 60.718 2
Thick_CI28.895 30.101 50.634 4
有全局特征引导Thin_CI29.880 30.068 40.793 4
Brok_CI31.499 80.059 60.812 7
LBrok_CI30.833 90.079 80.746 0
Thick_CI29.436 40.072 90.671 3
表 3  全局特征引导对去云效果的定量评价
数据集结构PSNR/dBRMSESSIM
Thin_CIA29.293 50.072 40.732 9
B28.737 00.095 20.689 1
C29.398 50.071 30.775 9
SSFIRB29.880 30.068 40.793 4
Brok_CIA30.362 10.064 00.726 2
B29.023 10.078 90.694 2
C30.646 70.069 10.793 0
SSFIRB31.499 80.059 60.812 7
LBrok_CIA29.983 10.087 60.676 2
B28.826 50.137 10.623 8
C29.728 60.136 00.721 4
SSFIRB30.833 90.079 80.746 0
Thick_CIA28.431 20.115 20.569 6
B28.219 80.111 60.575 2
C28.953 90.076 00.635 8
SSFIRB29.436 40.072 90.671 3
表 4  双激活门控卷积与通道注意力机制对云去除效果的定量评价
图 4  不同数据搭配方案对去云效果的影响
特征来源PSNR/dBRMSESSIM
光学数据29.205 70.083 60.574 9
SAR29.436 40.072 90.671 3
SAR+光学29.256 80.077 80.580 2
表 5  不同数据搭配方案对图像恢复的影响
特征提取结构MIoUAPR
CNN0.895 90.959 20.883 80.949 4
GC0.906 10.960 40.909 00.938 9
DAGC0.907 70.964 80.915 50.934 7
表 6  不同特征提取结构对云和非云的提取分析
图 5  本文方法在不同数据集上的迁移效果
训练集测试集ΔPSNR/dBΔRMSEΔSSIM
Thin_
CI
Thin_CI
Brok_CI?1.394 3+0.004 3?0.105 4
LBrok_CI?1.637 0+0.030 1?0.189 4
Thick_CI?1.545 9+0.014 4?0.226 0
Brok_
CI
Thin_CI?3.350 4+0.056 1?0.144 8
Brok_CI
LBrok_CI?2.764 5+0.044 0?0.154 2
Thick_CI?3.264 4+0.040 9?0.230 9
LBrok_
CI
Thin_CI?2.699 2+0.040 3?0.123 4
Brok_CI?2.021 1+0.012 7?0.050 8
LBrok_CI
Thick_CI?2.542 9+0.037 8?0.167 2
Thick_
CI
Thin_CI?0.760 6+0.010 1?0.000 4
Brok_CI?0.677 3+0.033 5?0.001 4
LBrok_CI?0.633 6+0.084 1?0.012 6
Thick_CI
表 7  本文方法在不同数据集上迁移效果定量评价
1 GAO X, ZHANG G, YANG Y, et al Two-stage domain adaptation based on image and feature levels for cloud detection in cross-spatiotemporal domain[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5610517
2 CHANG J, GAO X, YANG Y, et al Object-oriented building contour optimization methodology for image classification results via generalized gradient vector flow snake model[J]. Remote Sensing, 2021, 13 (12): 2406
doi: 10.3390/rs13122406
3 宦海, 盛宇, 顾晨曦 基于遥感图像道路提取的全局指导多特征融合网络[J]. 浙江大学学报: 工学版, 2024, 58 (4): 696- 707
HUAN Hai, SHENG Yu, GU Chenxi Global guidance multi-feature fusion network based on remote sensing image road extraction[J]. Journal of Zhejiang University: Engineering Science, 2024, 58 (4): 696- 707
4 ZHANG G, GAO X, YANG Y, et al Controllably deep supervision and multi-scale feature fusion network for cloud and snow detection based on medium- and high-resolution imagery dataset[J]. Remote Sensing, 2021, 13 (23): 4805
doi: 10.3390/rs13234805
5 HAN S, WANG J, ZHANG S Former-CR: a transformer-based thick cloud removal method with optical and SAR imagery[J]. Remote Sensing, 2023, 15 (5): 1196
doi: 10.3390/rs15051196
6 KING M D, PLATNICK S, MENZEL W P, et al Spatial and temporal distribution of clouds observed by MODIS onboard the terra and aqua satellites[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51 (7): 3826- 3852
doi: 10.1109/TGRS.2012.2227333
7 陈津乐, 张锦水, 段雅鸣, 等 中分辨率遥感影像云检测与厚云去除研究综述[J]. 遥感技术与应用, 2023, 38 (1): 143- 155
CHEN Jinle, ZHANG Jinshui, DUAN Yaming, et al A review of cloud detection and thick cloud removal in medium resolution remote sensing images.[J]. Remote Sensing Technology and Application, 2023, 38 (1): 143- 155
8 MAO R, LI H, REN G, et al Cloud removal based on SAR-optical remote sensing data fusion via a two-flow network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 7677- 7686
doi: 10.1109/JSTARS.2022.3203508
9 CHEN Y, TANG L, YANG X, et al Thick clouds removal from multitemporal ZY-3 satellite images using deep learning[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 143- 153
doi: 10.1109/JSTARS.2019.2954130
10 LI W, LI Y, CHAN J Thick cloud removal with optical and SAR imagery via convolutional-mapping-deconvolutional network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58 (4): 2865- 2879
doi: 10.1109/TGRS.2019.2956959
11 SHEN H, LI X, CHENG Q, et al Missing information reconstruction of remote sensing data: a technical review[J]. IEEE Geoscience and Remote Sensing Magazine, 2015, 3 (3): 61- 85
doi: 10.1109/MGRS.2015.2441912
12 MERANER A, EBEL P, ZHU X, et al Cloud removal in Sentinel-2 imagery using a deep residual neural network and SAR-optical data fusion[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 166: 333- 346
doi: 10.1016/j.isprsjprs.2020.05.013
13 HOAN N, TATEISHI R Cloud removal of optical image using SAR data for ALOS applications: experimenting on simulated ALOS data[J]. Journal of The Remote Sensing Society of Japan, 2009, 29 (2): 410- 417
14 LEE S, CHO M, LEE C An effective gap filtering method for Landsat ETM plus SLC-off data[J]. Terrestrial Atmospheric and Oceanic Sciences, 2016, 27 (6): 921- 932
doi: 10.3319/TAO.2016.07.18.02
15 LIN C, TSAI P, LAI K, et al Cloud removal from multitemporal satellite images using information cloning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51 (1): 232- 241
doi: 10.1109/TGRS.2012.2197682
16 KALKAN K, MAKTAV M D A cloud removal algorithm to generate cloud and cloud shadow free images using information cloning[J]. Journal of the Indian Society of Remote Sensing, 2018, 46 (8): 1255- 1264
doi: 10.1007/s12524-018-0806-y
17 MELGANI F Contextual reconstruction of cloud-contaminated multitemporal multispectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44 (2): 442- 455
doi: 10.1109/TGRS.2005.861929
18 ZHU X, GAO F, LIU D, et al A modified neighborhood similar pixel interpolator approach for removing thick clouds in Landsat images[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9 (3): 521- 525
doi: 10.1109/LGRS.2011.2173290
19 MENG Q, BORDERS B E, CIESZEWSKI C J, et al Closest spectral fit for removing clouds and cloud shadows[J]. Photogrammetric Engineering and Remote Sensing, 2009, 75 (5): 569- 576
doi: 10.14358/PERS.75.5.569
20 ZHANG Q, YUAN Q, ZENG C, et al Missing data reconstruction in remote sensing image with a unified spatial-temporal-spectral deep convolutional neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56 (8): 4274- 4288
doi: 10.1109/TGRS.2018.2810208
21 ZHANG Q, YUAN Q, LI J, et al Thick cloud and cloud shadow removal in multitemporal imagery using progressively spatio-temporal patch group deep learning[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 162: 148- 160
doi: 10.1016/j.isprsjprs.2020.02.008
22 ZHANG L, ZHANG M, SUN X, et al Cloud removal for hyperspectral remotely sensed images based on hyperspectral information fusion[J]. International Journal of Remote Sensing, 2018, 39 (20): 6646- 6656
doi: 10.1080/01431161.2018.1466068
23 XU T, GAO X, YANG Y, et al Construction of a semantic segmentation network for the overhead catenary system point cloud based on multi-scale feature fusion[J]. Remote Sensing, 2022, 14 (12): 2768
doi: 10.3390/rs14122768
24 郭承乾, 马刚, 梅江洲, 等 基于InSAR与多源数据融合的堆石坝外观变形重构[J]. 浙江大学学报: 工学版, 2022, 56 (2): 347- 355
GUO Chengqian, MA Gang, MEI Jiangzhou, et al Exterior deformation reconstruction of rockfill dam based on InSAR and multi-source data fusion[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (2): 347- 355
25 GROHNFELDT C, SCHMITT M, ZHU X. A conditional generative adversarial network to fuse SAR and multispectral optical data for cloud removal from Sentinel-2 images [C]// IEEE International Geoscience and Remote Sensing Symposium . Valencia: IEEE, 2018: 1726–1729.
26 WANG Y, ZHANG B, ZHANG W, et al Cloud removal with SAR-optical data fusion using a unified spatial-spectral residual network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5600820
27 LIU Y, WANG X, WANG L, et al A modified leaky ReLU scheme (MLRS) for topology optimization with multiple materials[J]. Applied Mathematics and Computation, 2019, 352: 188- 204
doi: 10.1016/j.amc.2019.01.038
28 CHEN L, CHU X, ZHANG X, et al. Simple baselines for image restoration [C]// European Conference on Computer Vision . Tel Aviv: Springer, 2022: 17–33.
29 EBEL P, XU Y, SCHMITT M, et al SEN12MS-CR-TS: a remote sensing data set for multi-modal multi-temporal cloud removal[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1- 14
30 LI Z, SHEN H, LI H, et al Multi-feature combined cloud and cloud shadow detection in GaoFen-1 wide field of view imagery[J]. Remote Sensing of Environment, 2017, 191: 342- 358
doi: 10.1016/j.rse.2017.01.026
31 CHEN L, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation [C]// European Conference on Computer Vision . Munich: Springer, 2018: 801–818.
32 LOSHCHILOV I, HUTTER F. SGDR: stochastic gradient descent with warm restarts [EB/OL]. (2017–05–03)[2025–03–13]. https://arxiv.org/abs/1608.03983.
[1] 薛雅丽,贺怡铭,崔闪,欧阳权. 基于改进YOLOv5的SAR图像有向舰船目标检测算法[J]. 浙江大学学报(工学版), 2025, 59(2): 261-268.
[2] 王琛,林威,胡良鹏,张骏铭. 分体式飞行汽车全自主对接导引系统设计与验证[J]. 浙江大学学报(工学版), 2023, 57(12): 2345-2355.
[3] 章军辉,郭晓满,王静贤,付宗杰,陈大鹏. 基于联合概率数据融合的多目标车辆安全跟随[J]. 浙江大学学报(工学版), 2023, 57(11): 2170-2178.
[4] 贺俊,张雅声,尹灿斌. 基于深度学习的星载SAR工作模式鉴别[J]. 浙江大学学报(工学版), 2022, 56(8): 1676-1684.
[5] 郭承乾,马刚,梅江洲,张贵科,李宏璧,周伟. 基于InSAR与多源数据融合的堆石坝外观变形重构[J]. 浙江大学学报(工学版), 2022, 56(2): 347-355.
[6] 孙超,李孟晖,韩飞. 智慧公路多源数据下的交通出行演化模型[J]. 浙江大学学报(工学版), 2020, 54(3): 546-556.
[7] 张帅超, 朱谊, 陈喜群. 基于移动检测数据的宏观基本图特征[J]. 浙江大学学报(工学版), 2018, 52(7): 1338-1344.
[8] 柯显信, 张文朕, 杨阳, 温雷. 仿人机器人多传感器定位系统[J]. 浙江大学学报(工学版), 2018, 52(7): 1247-1252.
[9] 郭彤, 郭斌, 张佳凡, 於志文, 周兴社. 多源社交数据融合的多角度旅游信息感知[J]. 浙江大学学报(工学版), 2017, 51(4): 663-668.
[10] 魏媛,冯天恒,黄平捷,侯迪波,张光新. 管网水质多指标动态关联异常检测方法[J]. 浙江大学学报(工学版), 2016, 50(7): 1402-1409.
[11] 王继奎. 贝叶斯冲突Web数据可信度算法[J]. 浙江大学学报(工学版), 2016, 50(12): 2380-2385.
[12] 杨力, 刘俊毅, 王延长, 刘济林. 基于全景相机和全向激光雷达的致密三维重建[J]. 浙江大学学报(工学版), 2014, 48(8): 1481-1487.
[13] 胡琦, 李红, 赵民德, 吴锋, 姚栋伟, 方正. 基于AUTOSAR的电控汽油机ECU软件
设计与实现
[J]. J4, 2011, 45(6): 1119-1123.
[14] 刘君 朱善安 贺斌. 基于力学分解原理的断层图像配准算[J]. J4, 2008, 42(9): 1601-1605.
[15] 才辉 张光新 张浩 周泽魁. 一种新的基于多信息测度融合的边缘检测方法[J]. J4, 2008, 42(10): 1671-1675.