Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (12): 2345-2355    DOI: 10.3785/j.issn.1008-973X.2023.12.001
机械工程、能源工程     
分体式飞行汽车全自主对接导引系统设计与验证
王琛1(),林威2,胡良鹏1,张骏铭1
1. 长安大学 工程机械学院,陕西 西安 710064
2. 中国兵器工业试验测试研究院技术中心,陕西 西安 710043
Design and verification of autonomous docking guidance system for modular flying vehicle
Chen WANG1(),Wei LIN2,Liang-peng HU1,Jun-ming ZHANG1
1. School of Construction Machinery, Chang’an University, Xi’an 710064, China
2. Technology Center, NORINCO Group Test and Measuring Academy, Xi’an 710043, China
 全文: PDF(3722 KB)   HTML
摘要:

研究针对分体式飞行汽车全自主对接导引系统的流程架构、软硬件系统、核心算法以及验证. 根据导引方式的过渡,采用远程、中程、近程多段融合导引. 针对YOLOv4-tiny实际使用中的误检、漏检情况,使用点密度聚类和核相关滤波算法提供光顺的融合信息. 提出修正因子方法以实现近程导引阶段AprilTag测量数据的融合修正,通过姿态补偿算法解决相机与无人机固连的相机姿态问题. 引入暗光图像增强算法,将引入算法与视觉导引算法结合,以满足低照度环境下的对接导引需求. 搭建仿真平台和工程应用平台,逐步对发展的流程、系统架构以及算法进行验证. 试验结果表明,工程应用飞行平台可以导引安全、平稳且精准的降落任务,在圆锥形对接机构中的容许误差为6 cm、角度误差为5°. 该结果证明提出的全自主对接导引技术精度良好且具有可靠性.

关键词: 分体式飞行汽车全自主对接导引单目视觉RTK-GPS多传感器数据融合    
Abstract:

The process architecture, software and hardware systems, core algorithms, and the validation of the autonomous docking guidance system for a modular flying vehicle were investigated. The remote, medium range, and short range multi segment fusion guidance was adopted based on the transition of guidance methods. The point density clustering algorithm and the kernel correlation filter algorithm were used to provide smooth fusion information in response to the false detections and missed detections in the actual use of YOLOv4-tiny. A correction factor method was proposed to achieve fusion correction of AprilTag measurement data in the short range guidance stage, and the pose compensation algorithm was used to solve the camera pose problem of fixed connection between the camera and the drone. The dark light image enhancement algorithm was introduced and combined with the visual guidance algorithm to meet the docking requirements in low-light environment. A simulation platform and an engineering application platform were built, and the process, the system architecture and the algorithms were verified step by step. Experimental results showed that the engineering application flight platform could safely, stably and accurately guide the landing into a conical docking mechanism with an allowable error of only 6 cm and an angle error of 5°. The results prove that the developed autonomous docking technology has good accuracy and reliability.

Key words: modular flying vehicle    autonomous docking guidance    monocular vision    RTK-GPS    multisensor data fusion
收稿日期: 2023-03-04 出版日期: 2023-12-27
CLC:  V 27  
作者简介: 王琛(1987—),男,副教授,从事特种无人系统的设计研究. orcid.org/0000-0002-0741-1588. E-mail: wangchenjustin@chd.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王琛
林威
胡良鹏
张骏铭

引用本文:

王琛,林威,胡良鹏,张骏铭. 分体式飞行汽车全自主对接导引系统设计与验证[J]. 浙江大学学报(工学版), 2023, 57(12): 2345-2355.

Chen WANG,Wei LIN,Liang-peng HU,Jun-ming ZHANG. Design and verification of autonomous docking guidance system for modular flying vehicle. Journal of ZheJiang University (Engineering Science), 2023, 57(12): 2345-2355.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.12.001        https://www.zjujournals.com/eng/CN/Y2023/V57/I12/2345

图 1  分体式飞行汽车的组成
图 2  飞行模块导引降落流程
图 3  分体式飞行汽车的对接导引硬件系统
图 4  基于滑动窗口的目标检测点密度聚类方法
图 5  图像增强前后对比
图 6  基于卡尔曼滤波的多传感器数据融合
图 7  不同取样点处的视觉标识码定位误差分析
图 8  工程应用平台与分体式飞行汽车的对应关系
图 9  错误检测帧目标修正过程
算法 场景1 场景2
FNR/% FPR/% ACC/% v/(帧·s?1 FNR/% FPR/% ACC/% v/(帧·s?1
Camshift 98.6 0 1.4 263 92.3 0 7.7 290
KCF 13.5 0 86.5 86 68.4 0 31.6 78
YOLOv4-tiny 27.2 29.2 43.6 129 44.2 14.9 40.9 132
本研究 0 8.3 91.7 74 0 6.7 93.3 65
表 1  不同算法在2种场景中的中程视觉目标检测结果
图 10  不同滚转角下,对接导引降落的水平方向位置误差
图 11  修正不确定度矩阵与初始不确定度矩阵融合后的相关参数对比
图 12  修正不确定度矩阵与初始不确定度矩阵融合后的三维飞行轨迹
不确定度矩阵类型 ${\overline X_{\rm{e}}}/{\rm{cm}} $ ${\overline Z_{\rm{e}}}/{\rm{cm}} $ ${\overline \theta _{\rm{e}}} $/(°)
初始 9.5667 15.9694 2.2724
修正 6.8554 11.3931 2.2724
表 2  多传感数据融合的仿真试验结果
图 13  上对接自主导引降落试验流程
图 14  上对接验证试验相对位姿偏差变化
图 15  下对接自主导引降落试验流程
图 16  下对接验证试验相对位姿偏差变化
1 PAN G, ALOUINI M S Flying car transportation system: Advances, techniques, and challenges[J]. IEEE Access, 2021, 9: 24586- 24603
doi: 10.1109/ACCESS.2021.3056798
2 SASAKI T, HIDAKA M, TOMITA Y, et al. Proximity operation and automated docking on HTV-X: guidance, navigation, and control strategy [C]// 2022 IEEE Aerospace Conference. Big Sky: IEEE, 2022: 1-10.
3 VOLPE R, CIRCI C Optical-aided, autonomous and optimal space rendezvous with a non-cooperative target[J]. Acta Astronautica, 2019, 157: 528- 540
doi: 10.1016/j.actaastro.2019.01.020
4 MCMAHON J W, GEHLY S, AXELRAD P. Enhancing relative attitude and trajectory estimation for autonomous rendezvous using flash LIDAR [C]// AIAA/AAS Astrodynamics Specialist Conference. San Diego: [s.n.], 2014: 4359.
5 SORNSIN B A, SHORT B W, BOURBEAU T N, et al. Global shutter solid state flash lidar for spacecraft navigation and docking applications [C]// Laser Radar Technology and Applications XXIV. [S.l.]: SPIE, 2019.
6 SHI K, LIU C, BIGGS J D, et al Observer-based control for spacecraft electromagnetic docking[J]. Aerospace Science and Technology, 2020, 99: 105759
doi: 10.1016/j.ast.2020.105759
7 YAZDANI A M, SAMMUT K, YAKIMENKO O, et al A survey of underwater docking guidance systems[J]. Robotics and Autonomous Systems, 2020, 124: 103382
doi: 10.1016/j.robot.2019.103382
8 WANG T, ZHAO Q, YANG C Visual navigation and docking for a planar type AUV docking and charging system[J]. Ocean Engineering, 2021, 224: 108744
doi: 10.1016/j.oceaneng.2021.108744
9 VANDAVASI B N J, ARUNACHALAM U, NARAYANASWAMY V, et al Concept and testing of an electromagnetic homing guidance system for autonomous underwater vehicles[J]. Applied Ocean Research, 2018, 73: 149- 159
doi: 10.1016/j.apor.2018.02.003
10 PALOMERAS N, VALLICROSA G, MALLIOS A, et al AUV homing and docking for remote operations[J]. Ocean Engineering, 2018, 154: 106- 120
doi: 10.1016/j.oceaneng.2018.01.114
11 MATIAS B, OLIVEIRA H, ALMEIDA J, et al. High-accuracy low-cost RTK-GPS for an unmanned surface vehicle [C]// Oceans 2015-Genova. Genova: IEEE, 2015.
12 HENKEL P, SPERL A. Real-time kinematic positioning for unmanned air vehicles [C]// 2016 IEEE Aerospace Conference. Big Sky: IEEE, 2016: 1-7
13 KANG Y, PARK B J, CHO A, et al A precision landing test on motion platform and shipboard of a tilt-rotor UAV based on RTK-GNSS[J]. International Journal of Aeronautical and Space Sciences, 2018, 19 (4): 994- 1005
doi: 10.1007/s42405-018-0081-8
14 CUI T, GUO C, LIU Y, et al. Precise landing control of UAV based on binocular visual SLAM [C]// 2021 4th International Conference on Intelligent Autonomous Systems. Wuhan: IEEE, 2021: 312-317.
15 CHEN C, CHEN S, HU G, et al An auto-landing strategy based on pan-tilt based visual servoing for unmanned aerial vehicle in GNSS-denied environments[J]. Aerospace Science and Technology, 2021, 116: 106891
doi: 10.1016/j.ast.2021.106891
16 席志鹏, 楼卓, 李晓霞, 等 集中式光伏电站巡检无人机视觉定位与导航[J]. 浙江大学学报: 工学版, 2019, 53 (5): 880- 888
XI Zhi-peng, LOU Zhuo, LI Xiao-xia, et al Vision-based localization and navigation for UAV inspection in photovoltaic farms[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (5): 880- 888
17 苏贇, 王挺, 姚辰, 等 基于合作目标的无人机目标跟踪方法[J]. 机器人, 2019, 41 (4): 425- 432
SU Yun, WANG Ting, YAO Chen, et al A target tracking method of UAV based on cooperative target[J]. Robot, 2019, 41 (4): 425- 432
doi: 10.13973/j.cnki.robot.180479
18 张咪, 赵勇, 布树辉, 等 基于阶层标识的无人机自主精准降落系统[J]. 航空学报, 2018, 39 (10): 322150
ZHANG Mi, ZHAO Yong, BU Shu-hui, et al Mutil-level marker based autonomous landing system for UAVs[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39 (10): 322150
doi: 10.7527/S1000-6893.2018.22150
19 ARORA S, JAIN S, SCHERER S, et al. Infrastructure-free shipdeck tracking for autonomous landing [C]// 2013 IEEE International Conference on Robotics and Automation. Karlsruhe: IEEE, 2013: 323-330.
20 ARIANTE G, PAPA U, PONTE S, et al. UAS for positioning and field mapping using LIDAR and IMU sensors data: Kalman filtering and integration [C]// 2019 IEEE 5th International Workshop on Metrology for AeroSpace. Turin: IEEE, 2019: 522-527.
21 XU Y, SHMALIY Y S, AHN C K, et al Tightly coupled integration of INS and UWB using fixed-lag extended UFIR smoothing for quadrotor localization[J]. IEEE Internet of Things Journal, 2020, 8 (3): 1716- 1727
22 CHENG C, LI X, XIE L, et al Autonomous dynamic docking of UAV based on UWB-vision in GPS-denied environment[J]. Journal of the Franklin Institute, 2022, 359 (7): 2788- 2809
doi: 10.1016/j.jfranklin.2022.03.005
23 MARCON P, JANOUSEK J, KADLEC R. Vision-based and differential global positioning system to ensure precise autonomous landing of UAVs [C]// 2018 Progress in Electromagnetics Research Symposium. Wuhan: IEEE, 2018: 542-546.
24 KROGIUS M, HAGGENMILLER A, OLSON E. Flexible layouts for fiducial tags [C]// 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems. [S.l.]: IEEE, 2019: 1898-1903.
25 KIM J, WOO S, KIM K. Lidar-guided autonomous landing of an aerial vehicle on a ground vehicle [C]// 2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence. Jeju: IEEE, 2017: 228-231.
[1] 杨恒,李卓,康忠元,田兵,董青. 基于循环神经网络的双目视觉物体6D位姿估计[J]. 浙江大学学报(工学版), 2023, 57(11): 2179-2187.
[2] 蔺志伟,李奇敏,汪显宇. 基于改进Census变换的单目视觉里程计[J]. 浙江大学学报(工学版), 2021, 55(8): 1500-1509.
[3] 赵丽科, 郑顺义, 王晓南, 黄霞. 单目序列的刚体目标位姿测量[J]. 浙江大学学报(工学版), 2018, 52(12): 2372-2381.
[4] 郑驰, 项志宇, 刘济林. 融合光流与特征点匹配的单目视觉里程计[J]. J4, 2014, 48(2): 279-284.