Please wait a minute...
浙江大学学报(工学版)
环境工程、生物医学工程     
管网水质多指标动态关联异常检测方法
魏媛,冯天恒,黄平捷,侯迪波,张光新
浙江大学 工业控制技术国家重点实验室,浙江 杭州 310027
Contamination event detection method based on dynamic correlation analysis of multiple water quality parameters
WEI Yuan, FENG Tian heng, HUANG Ping jie, HOU Di bo, ZHANG Guang xin
State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1666 KB)   HTML
摘要:

为了提高城市供水管网水质监测系统的污染检测能力,利用污染物所引起多个指标变化之间的关联特性,提出基于多常规水质指标动态关联分析的水质异常检测方法.应用动态时间规整算法(DTW)衡量多个常规水质指标时间序列间的动态距离,刻画各指标波动的相似程度和动态关联特性.利用D-S证据理论融合各指标单独的异常概率,将融合后得到的供水管网水质异常概率与所设定的多指标融合异常概率阈值进行比较,作出当前时刻水质是否存在水质异常的综合判断.依托课题组模拟供水管网实验系统,设计不同浓度的硫酸铜和铁氰化钾污染物的注入实验,利用在线监测的pH值、浊度、余氯、溶解氧等8种常规水质指标进行动态关联分析和水质异常检测,方法的可行性和异常检测性能通过受试者工作特征曲线(ROC)进行验证.

Abstract:

A multivariate correlation analysis method was proposed by exploring the internal correlation within conventional water quality parameters before and after the occurrence of contamination event in order to improve the performance of the existing water quality anomaly detection methods. The dynamic distance between each two monitored parameters was calculated to define the fluctuation correlation of the two time series by using the dynamic time warping (DTW) method. The correlation coefficient was fused with univariate basic abnormal probability based on D-S evidence theory in order to obtain the fused probability. The synthesis alarm decision was made by comparing the fused probability with the threshold. The proposed method was tested with experimental monitoring data collected from the laboratory pipeline system. Different concentrations of copper sulfate and potassium ferricyanide were separately injected into the pipeline system. Eight conventional monitoring parameters were measured by sensors installed along the pipeline. The collected monitoring data was applied to correlation analysis and probability fusion based on the proposed method. The ROC analysis was introduced to verify the performance and validity of the techniques.

出版日期: 2016-07-23
:  X 832  
基金资助:

国家自然科学基金资助项目(61573313|U1509208);浙江省科技厅公益资助项目(2014C33025);浙江省重点研发计划资助项目(2015C03G2010034).

通讯作者: 黄平捷,男,副教授. ORCID: 0000-0002-5487-6097.     E-mail: huangpingjie@zju.edu.cn
作者简介: 魏媛(1990-),女,硕士生,从事多源信息融合水质异常检测技术研究. ORCID: 0000-0002-5312-8791. E-mail: vera_wy@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

魏媛,冯天恒,黄平捷,侯迪波,张光新. 管网水质多指标动态关联异常检测方法[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.07.025.

WEI Yuan, FENG Tian heng, HUANG Ping jie, HOU Di bo, ZHANG Guang xin. Contamination event detection method based on dynamic correlation analysis of multiple water quality parameters. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.07.025.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.07.025        http://www.zjujournals.com/eng/CN/Y2016/V50/I7/1402

[1] TAMMINEN S, RAMOS H, COVAS D. Water supply system performance for different pipe materials part I; water quality analysis [J]. Water Resources Management, 2008, 22(11): 1579-1607.
[2] BYER M D, CARLSON K. Realtime detection of intentional chemical contamination in the distribution system [J]. Journal American Water Works Association, 2005, 97(7): 134.
[3] FARUK D. A hybrid neural network and ARIMA model for water quality time series prediction [J]. Engineering Applications of Artificial Intelligence, 2010, 23(4): 586-594.
[4] BABIN S M, BURKOM H S, MNATSAKANYAN Z R, et al. Drinking water security and public health disease outbreak surveillance [J]. Johns Hopkins Apl Technical Digest, 2008, 27(4): 403-411.
[5] OLIKER N, OSTAFELD A. A coupled classification – evolutionary optimization model for contamination event detection in water distribution systems [J]. Water Research, 2014, 51(6): 234-245.
[6] PERELMAN L, ARAD J, HOUSH M, et al. Event detection in water distribution systems from multivariate water quality time series [J]. Environmental Science and Technology, 2012, 46(15): 8212-8219.
[7] MODARESI F, ARAGHINEJAD S. A comparative assessment of support vector machines, probabilistic neural networks, and knearest neighbor algorithms for water quality classification [J]. Water Resources Management, 2014, 28(12): 4095-4111.
[8] ZOU H, ZOU Z, WANG X. An enhanced Kmeans algorithm for water quality analysis of the Haihe river in China [J]. International Journal of Environmental Research and Public Health, 2015, 12(11): 14400-14413.
[9] MCKENNA S A, VUGRIN E D, HART D B, et al. Multivariate trajectory clustering for false positive reduction in online event detection [J]. Journal of Water Resources Planning and Management, 2013, 139(1): 312.
[10] OLIKER N, OSTFELD A.Minimum volume ellipsoid classification model for contamination event detection in water distribution systems [J]. Bulletin of the Atomic Scientists, 2014, 57(6): 112.
[11] MCKENNA S A, KLISE K A. Multivariate applications for detecting anomalous water quality [C] ∥ 2006 Water Distribution Systems Analysis Symposium. Cincinnati: [s. n.], 2006: 111.
[12] YANG Y J, HAUGHT R C, GOODRICH J A. Realtime contaminant detection and classification in a drinking water pipe using conventional water quality sensors: techniques and experimental results [J]. Journal of Environmental Management, 2009, 90(8): 2494-2506.
[13] OLIKER N, OSTFELD A. Water quality event detection in water networks through multiple sensors data [C] ∥ Proceedings of World Environmental and Water Resources Congress. Austin: IEEE, 2015: 902-906.
[14] BENSALEH M S, QASIM S M, OBEID A M, et al. A review on wireless sensor network for water pipeline monitoring applications [C] ∥ 2013 Collaboration Technologies and Systems (CTS) of IEEE. San Diego: IEEE, 2013: 128-131.
[15] JONATHAN A, MASHOR H, LINA P, et al. A dynamic thresholds scheme for contaminant event detection in water distribution systems [J]. Water Research, 2013, 47(5): 1899-1908.
[16] SHUMING L, HAN C, KATE S, et al. Contamination event detection using multiple types of conventional water quality sensors in source water [J]. Environmental Monitoring and Assessment, 2014, 16(8): 2028-2038.
[17] MUNIZ C D, NIETO P J, FERNANDEZ J R, et al. Detection of outliers in water quality monitoring samples using functional data analysis in San Esteban estuary (Northern Spain) [J]. Science of the Total Environment, 2012, 439(1): 54-61.
[18] GIAO B C, ANH D T. Similarity search in multiple high speed time series streams under dynamic time warping [C] ∥ 2015 National Foundation for Science and Technology Development Conference on Information and Computer Science. Ho Chi Minh City: IEEE, 2015: 82-87.
[19] ZHU Q Y, ZHANG G X, FENG T H, et al. Study on water quality analysis and earlywarning technology based on rough set and evidence theory [J]. Journal of Zhejiang University, 2012, 38(6): 747-754.
[20] 杨将新,郑华文,曹衍龙,等. 基于自适应 AR 模型的核电站松动件报警方法[J]. 原子能科学技术, 2010, 44(6): 701-705.
YANG Jiangxin, ZHENG Huawen, CAO Yanlong, et al. Alarming method of loose parts in nuclear power plant based on adaptive autoregressive model [J]. Atomic Energy Science and Technology, 2010, 44(6): 701-705.
[21] 李正欣,张凤鸣,李克武. 基于DTW的多元时间序列模式匹配方法[J]. 模式识别与人工智能, 2011, 03(4): 425-430.
LI Zhengxin, ZHANG Fengming, LI Kewu. DTW based pattern matching method for multivariate time series [J]. Pattern Recognition and Artificial Intelligence, 2011, 03(4): 425-430.
[22] BERNDT D J, CLIFFORD J. Finding patterns in time series: a dynamic programming approach [J]. Advances in Knowledge Discovery and Data Mining, 1996, 1(1): 229-248.
[23] FAWCETT T. An introduction to ROC analysis [J]. Pattern Recognition Letters, 2006, 27(8): 861-874.

[1] 何慧梅, 侯迪波, 赵海峰, 黄平捷, 张光新. 基于多因子融合的水质异常检测算法[J]. J4, 2013, 47(4): 735-740.