人机交互与普适计算 |
|
|
|
|
多源社交数据融合的多角度旅游信息感知 |
郭彤, 郭斌, 张佳凡, 於志文, 周兴社 |
西北工业大学 计算机学院, 陕西 西安 710129 |
|
CrowdTravel: leveraging heterogeneous crowdsourced data for scenic spot profiling |
GUO Tong, GUO Bin, ZHANG Jia-fan, YU Zhi-wen, ZHOU Xing-she |
School of Computer Science, Northwestern Polytechnical University, Xi’an 710129, China |
引用本文:
郭彤, 郭斌, 张佳凡, 於志文, 周兴社. 多源社交数据融合的多角度旅游信息感知[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2017.04.004.
GUO Tong, GUO Bin, ZHANG Jia-fan, YU Zhi-wen, ZHOU Xing-she. CrowdTravel: leveraging heterogeneous crowdsourced data for scenic spot profiling. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2017.04.004.
|
[1] ZHANG D, GUO B, YU Z. The emergence of social and community intelligence [J]. Computer, 2011,44(7): 21-28.
[2] GUO B, WANG Z, YU Z, et al. Mobile crowd sensing and computing: the review of an emerging human-powered sensing paradigm [J]. ACM Computing Surveys, 2015, 48(1): 1-31.
[3] BIAN J, YANG Y, CHUA T S. Multimedia summarization for trending topics in microblogs [C] ∥ ACM International Conference on Conference on Information and Knowledge Management.San Francisco: ACM, 2013: 1807-1812.
[4] LIU B, HU M, CHENG J. Opinion observer: analyzing and comparing opinions on the Web [C] ∥ International Conference on World Wide Web. Chiba: ACM, 2005: 342-351.
[5] GONG Y, LIU X. Generic text summarization using relevance measure and latent semantic analysis [C] ∥ SIGIR ′01: Proceedings of the International ACM SIGIR Conference on Research and Development in Information Retrieval. New Orleans: ACM, 2001: 19-25.
[6] RATTENBURY T, NAAMAN M. Methods for extracting place semantics from Flickr tags [J]. ACM Transactions on the Web, 2009, 3(1): 1139-1141.
[7] HAO Q, CAI R, WANG C, et al. Equip tourists with knowledge mined from travelogues [C] ∥ International Conference on World Wide Web. Raleigh: DBLP, 2010: 401-410.
[8] SHEN D, SUN J T, LI H, et al. Document summarization using conditional random fields [C] ∥Proceedings of the International Joint Conference on Artificial Intelligence. Hyderabad: DBLP, 2007: 2862-2867.
[9] WANG T, BAI C. Understand the city better: multimodal aspect-opinion summarization for travel [C] ∥ Web Information Systems EngineeringWISE. Thessaloniki, Greece: Springer, 2014.
[10] GUO T, GUO B, ZHANG J, et al. CrowdTravel: Leveraging Heterogeneous Crowdsourced Data for Scenic Spot Profiling and Recommendation [M]∥ Advances in Multimedia Information Processing-PCM 2016. Xi’an, China: Springer, 2016: 617-628.
[11] LIN C Y, HOVY E. From single to multi-document summarization: a prototype system and its evaluation [C] ∥ Meeting on Association for Computational Linguistics. Philadelphia: ACM, 2002: 457-464.
[12] WAN X, YANG J. Multi-document summarizationusing cluster-based link analysis [C] ∥ International ACM SIGIR Conference on Research and Development in Information Retrieval. Singapore: ACM, 2008:299-306.
[13] LI L, ZHOU K, XUE G R, et al. Enhancing diversity, coverage and balance for summarization through structure learning [C] ∥ International Conference on World Wide Web. Madrid: DBLP, 2009: 71-80.
[14] RADEV D R, JING H, STYS M, et al. Centroid-based summarization of multiple documents [J]. Information Processing and Management, 2004, 40(6):919-938.
[15] MOGHADDAM S, ESTER M. Opinion digger: an unsupervised opinion miner from unstructured product reviews [C] ∥ ACM Conference on Information and Knowledge Management. Toronto: ACM, 2010:1825-1828.
[16] GUO H, ZHU H, GUO Z, et al. Product feature categorization with multilevel latent semantic association [C] ∥ ACM Conference on Information and Knowledge Management. Hong Kong, China: ACM, 2009: 1087-1096.
[17] HAGHIGHI A, VANDERWENDE L. Exploring content models for multi-document summarization [C] ∥ Human Language Technologies: Conference of the North American Chapter of the Association of Computational Linguistics. Boulder: DBLP, 2009: 362-370.
[18] FREY B J, DUECK D. Clustering by passing messages between data points [J]. Science, 2007, 315(5814): 972-976.
[19] TORRALBA A, MURPHY K P, FREEMAN W T, et al. Context-based vision system for place and object recognition [C] ∥ IEEE International Conference on Computer Vision. Beijing, China: IEEE, 2003: 273. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|