Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (11): 2170-2178    DOI: 10.3785/j.issn.1008-973X.2023.11.004
计算机技术     
基于联合概率数据融合的多目标车辆安全跟随
章军辉1,2,3(),郭晓满2,3,王静贤2,3,付宗杰2,3,陈大鹏2,3
1. 常熟理工学院 电气与自动化工程学院,江苏 苏州 215500
2. 无锡物联网创新中心有限公司,江苏 无锡 214029
3. 江苏省物联网创新中心昆山分中心,江苏 苏州 215347
Safety-enhanced multi-vehicle tracking based on joint probability data association
Jun-hui ZHANG1,2,3(),Xiao-man GUO2,3,Jing-xian WANG2,3,Zong-jie FU2,3,Da-peng CHEN2,3
1. School of Electrical and Automatic Engineering, Changshu Institute of Technology, Suzhou 215500, China
2. Wuxi Internet of Things Innovation Center Co. Ltd, Wuxi 214029, China
3. Kunshan Department, Jiangsu Internet of Things Innovation Center, Wuxi 215347, China
 全文: PDF(2042 KB)   HTML
摘要:

为了实现密集杂波环境下多目标车辆安全跟随,提出多源传感器数据融合的多目标车辆跟踪算法与纵向避撞预警策略. 针对多源传感器观测序列因采样周期、采样起始时刻、通信时延差异等引起的时间异步,以及空间上存在不同维度、不同坐标系的问题,给出时间配准与空间融合的软同步方法. 采用基于改进的联合概率数据关联(JPDA)的单一传感器多目标状态估计算法对目标轨迹进行滤波估计,能够在保证有效关联的同时,在一定程度上降低计算复杂度. 基于多源传感器联合概率数据融合(MSJPDA)序贯滤波算法对目标的运动状态进行序贯更新,将最后一级的输出作为融合中心的最终状态估计,再根据威胁估计模型对追尾危险的发展态势进行评估与分级. 实车试验与仿真结果验证了该算法的可行性与有效性.

关键词: 智能车辆多源数据融合多车辆跟踪威胁估计联合概率数据关联    
Abstract:

A novel multi-sensor data fusion based multi-vehicle tracking algorithm and a longitudinal collision warning strategy were proposed, in order to achieve the safety-enhanced multi-vehicle tracking in dense clutter environments. The time registration and spatial fusion approaches were introduced, with respect to the problems of time asynchronous sampling sequences of multi-source sensors caused by nonidentity of sampling periods, sampling start-up time and inherent communication time delay, as well as different coordinate systems and different space dimensions. The single sensor multi-object state estimation based on the improved joint probability data association (JPDA) was utilized to estimate the multi-object trajectory, which not only ensured the effective association, but also could reduce the computational complexity to a certain extent. Furthermore, the multi-sensor joint probability data association (MSJPDA) sequential filtering algorithm was employed to update the motion state of targets serially, and the output of the last sensor was utilized as the state estimation of the fusion center, by which the situation of longitudinal collision could be well-estimated. Results of comparative experiment demonstrated the feasibility and effectiveness of the tracking algorithm proposed.

Key words: intelligent vehicle    multi-source data fusion    multi-vehicle tracking    threat estimation    joint probabilistic data association
收稿日期: 2022-11-15 出版日期: 2023-12-11
CLC:  U 461.91  
基金资助: 江苏省博士后科研资助计划(2020Z411)
作者简介: 章军辉(1985—),男,高级工程师,博士,从事车路协同智能驾驶研究. orcid.org/0000-0001-5885-4314. E-mail: zjh34@mail.ustc.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
章军辉
郭晓满
王静贤
付宗杰
陈大鹏

引用本文:

章军辉,郭晓满,王静贤,付宗杰,陈大鹏. 基于联合概率数据融合的多目标车辆安全跟随[J]. 浙江大学学报(工学版), 2023, 57(11): 2170-2178.

Jun-hui ZHANG,Xiao-man GUO,Jing-xian WANG,Zong-jie FU,Da-peng CHEN. Safety-enhanced multi-vehicle tracking based on joint probability data association. Journal of ZheJiang University (Engineering Science), 2023, 57(11): 2170-2178.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.11.004        https://www.zjujournals.com/eng/CN/Y2023/V57/I11/2170

图 1  多车道多目标车辆跟踪问题的坐标系建立
图 2  雷达与相机采样序列示意图
图 3  相机像素坐标系与世界坐标系的映射关系
图 4  雷达与相机数据关联流程
类别 融合方法 不确定性 融合层次
概率统计类 加权平均法 低层次
卡尔曼滤波法 高斯噪声 低层次
贝叶斯估计法 高斯噪声 低层次
产生式规则 置信因子 高层次
人工智能类 模糊推理 隶属度 高层次
神经网络 学习误差 低或高
表 1  常用的数据融合方法比较
图 5  MSJPDA序贯滤波算法流程图
图 6  试验车及传感器
传感器 参数 数值
毫米波
雷达
型号 大陆ARS 408-21
载波频率/ GHz 77
长距模式 最大测距/m 250
量测精度/m ±0.4
水平角/(°) ±9
短距模式 最大测距/m 70
量测精度/m ±0.1
水平角/(°) ±45
速度范围/(km·h?1) ?400~200
(?表示远离目标;+表示靠近目标)
通信方式 CAN
扫描周期/ms ~60
相机 型号 Logitech C310
分辨率/像素 1 280×720
焦距/mm 29.5
帧率/(帧·s?1) 30
表 2  雷达与相机的主要参数
图 7  多车道多目标车辆跟踪检测结果
图 8  本车道内自车与OOI车辆的纵向相对运动估计
图 9  本车道内自车与OOI车辆的横向相对运动估计
图 10  本车道内自车与OOI车辆的纵向车距分布
图 11  邻道OOI目标车辆纵向运动估计对比
图 12  MSJPDA估计与加权融合估计算法对比
图 13  本车道内OOI车辆的轨迹估计
1 章军辉, 李庆, 陈大鹏 基于BP神经网络的纵向避撞安全辅助算法[J]. 西安交通大学学报, 2017, 51 (7): 140- 147
ZHANG Jun-hui, LI Qing, CHEN Da-peng Safety assistance algorithm for longitudinal collision avoidance based on BP neural network[J]. Journal of Xi'an Jiaotong University, 2017, 51 (7): 140- 147
2 DONG Y, LI X, DEZERT J, et al A novel multi-criteria discounting combination approach for multi-sensor fusion[J]. IEEE Sensors Journal, 2019, 19 (20): 9411- 9421
doi: 10.1109/JSEN.2019.2922769
3 HE S, SHIN H, TSOURDOS A Multi-sensor multi-target tracking using domain knowledge and clustering[J]. IEEE Sensors Journal, 2018, 18 (19): 8074- 8084
doi: 10.1109/JSEN.2018.2863105
4 何友, 关欣, 王国宏 多传感器信息融合研究进展与展望[J]. 宇航学报, 2005, 26 (4): 7
HE You, GUAN Xin, WANG Guo-hong Survey on the progress and prospect of multisensor information fusion[J]. Journal of Astronautics, 2005, 26 (4): 7
5 SINHA A, DING Z, KIRUBARAJAN T, et al Track quality based multitarget tracking approach for global nearest-neighbor association[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48 (2): 1179- 1191
doi: 10.1109/TAES.2012.6178056
6 HONG L, CUI N Z An interacting multi-pattern probabilistic data association (IMP-PDA) algorithm for target tracking[J]. IEEE Transactions on Automatic Control, 2001, 46 (8): 1223- 1236
doi: 10.1109/9.940926
7 李首庆, 徐洋 基于自适应聚概率矩阵的JPDA算法研究[J]. 西南交通大学学报, 2017, 52 (2): 340- 347
LI Shou-qing, XU Yang Joint probabilistic data association algorithm based on adaptive cluster probability matrix[J]. Journal of Southwest Jiaotong University, 2017, 52 (2): 340- 347
doi: 10.3969/j.issn.0258-2724.2017.02.018
8 孙宁, 秦洪懋, 张利, 等 基于多传感器信息融合的车辆目标识别方法[J]. 汽车工程, 2017, 39 (11): 1310- 1315
SUN Ning, QIN Hong-mao, ZHANG Li, et al Vehicle target recognition based on multi-sensor information fusion[J]. Automotive Engineering, 2017, 39 (11): 1310- 1315
doi: 10.19562/j.chinasae.qcgc.2017.11.014
9 刘俊, 刘瑜, 何友, 等 杂波环境下基于全邻模糊聚类的联合概率数据互联算法[J]. 电子与信息学报, 2016, 38 (6): 1438- 1445
LIU Jun, LIU Yu, HE You, et al Joint probabilistic data association algorithm based on all-neighbor fuzzy clustering in cluster[J]. Journal of Electronic and Information Technology, 2016, 38 (6): 1438- 1445
doi: 10.11999/JEIT150849
10 CORALUPPI S P, CARTHEL C A Multiple hypothesis tracking for targets producing multiple measurements[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54 (3): 1485- 1498
doi: 10.1109/TAES.2018.2796478
11 YOO H, KIM K, BYEON M, et al Online scheme for multiple camera multiple target tracking based on multiple hypothesis tracking[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2017, 27 (3): 454- 469
doi: 10.1109/TCSVT.2016.2593619
12 BAR-SHALOM Y, TSE E Tracking in a cluttered environment with probabilistic data association[J]. Automatic, 1975, 11 (9): 451- 460
13 陈晓, 李亚安, 蔚婧, 等 基于最大熵模糊聚类的快速多目标跟踪算法研究[J]. 西北工业大学学报, 2017, 35 (4): 629- 634
CHEN Xiao, LI Ya-an, WEI Jing, et al A fast multi-target tracking algorithm based on maximum entropy fuzzy clustering[J]. Journal of Northwestern Polytechnical University, 2017, 35 (4): 629- 634
doi: 10.3969/j.issn.1000-2758.2017.04.011
14 郭应时, 王畅, 付锐, 等 城市道路环境中驾驶人应激响应时间特性[J]. 中国公路学报, 2013, 26 (6): 135- 142
GUO Ying-shi, WANG Chang, FU Rui, et al Driver’s reaction time under city road conditions[J]. China Journal of Highway and Transport, 2013, 26 (6): 135- 142
doi: 10.3969/j.issn.1001-7372.2013.06.019
15 王博, 卢萍萍, 管欣, 等 路面附着系数识别方法发展现状综述[J]. 汽车技术, 2014, (8): 1- 7
WANG Bo, LU Ping-ping, GUAN Xin, et al A review on the development status of road adhesion coefficient identification approach[J]. Automobile Technology, 2014, (8): 1- 7
16 章军辉, 李庆, 陈大鹏 实时多目标权重弯道跟随预测控制[J]. 天津大学学报: 自然科学与工程技术版, 2020, 53 (8): 861- 871
ZHANG Jun-hui, LI Qing, CHEN Da-peng Multi-objective real-time weighted model predictive control for car-following[J]. Journal of Tianjin University: Science and Technology, 2020, 53 (8): 861- 871
[1] 赵建军,王毅,杨利斌. 基于时间序列预测的威胁估计方法[J]. J4, 2014, 48(3): 398-403.