|
|
结合静态事实和重复历史事实的动态知识图谱推理方法 |
林栋1( ),李永强1,*( ),仇翔1,冯远静1,谢碧峰2 |
1. 浙江工业大学 信息工程学院,浙江 杭州 310012 2. 杭州峰景科技有限公司,浙江 杭州 310000 |
|
Dynamic knowledge graph inference method combining static facts and repeated historical facts |
Dong LIN1( ),Yong-qiang LI1,*( ),Xiang QIU1,Yuan-jing FENG1,Bi-feng XIE2 |
1. School of Information Engineering, Zhejiang University of Technology, Hangzhou 310012, China 2. Hangzhou Fengjing Technology Company, Hangzhou 310000, China |
引用本文:
林栋,李永强,仇翔,冯远静,谢碧峰. 结合静态事实和重复历史事实的动态知识图谱推理方法[J]. 浙江大学学报(工学版), 2023, 57(10): 1915-1922.
Dong LIN,Yong-qiang LI,Xiang QIU,Yuan-jing FENG,Bi-feng XIE. Dynamic knowledge graph inference method combining static facts and repeated historical facts. Journal of ZheJiang University (Engineering Science), 2023, 57(10): 1915-1922.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.10.001
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I10/1915
|
1 |
LIU Z, XIONG C, SUN M, et al. Entity-duet neural ranking: Understanding the role of knowledge graph semantics in neural information retrieval [C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Columbus: ACL, 2008: 2395-2405.
|
2 |
JIANG T, LIU T, GE T, et al. Encoding temporal information for time-aware link prediction [C]// Proceedings of the Conference on Empirical Methods in Natural Language Processing. Austin: ACL, 2016: 2350-2354.
|
3 |
BORDES A, USUNIER N, GARCIADURAN A, et al. Translating embeddings for modeling multi-relational data [C]// Proceedings of the Neural Information Processing Systems. Lake Tahoe: NIP, 2013: 2787-2795.
|
4 |
WANG Z, ZHANG J, FENG J, et al. Knowledge graph embedding by translating on hyperplanes [C]// Proceedings of the AAAI Conference on Artificial Intelligence. Quebec: AAAI, 2014, 28(1): 1112-1119.
|
5 |
DAI S, LIANG Y, LIU S, et al. Learning entity and relation embeddings with entity description for knowledge graph completion [C]// Proceedings of the 4th International Conference on Artificial Intelligence Technologies and Applications. Chengdu: JPCS, 2018: 202-205.
|
6 |
TROUILLON T, WELBL J, RIEDEL S, et al. Complex embeddings for simple link prediction [C]// Proceedings of the International Conference on Machine Learning. Hong Kong: ACM, 2016: 2071-2080.
|
7 |
SOCHER R, CHEN D, MANNING C D, et al. Reasoning with neural tensor networks for knowledge base completion [C]// Proceedings of the Neural Information Processing Systems. Lake Tahoe: NIP, 2013: 926-934.
|
8 |
SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks [C]// Proceedings of the European Semantic Web Conference. Heraklion: ESWC, 2018: 593-607.
|
9 |
KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks [EB/OL]. [2022-09-01]. https://arxiv.org/abs/1609.02907.
|
10 |
LEBLAY J, CHEKOL M W. Deriving validity time in knowledge graph [C]// Proceedings of the 27th Internation Conference on World Wide Web. Lyons: ACM, 2018: 1771-1776.
|
11 |
DASGUPTA S S, RAY S N, TALUKDAR P. Hyte: hyperplane-based temporally aware knowledge graph embedding [C]// Proceedings of the Conference on Empirical Methods in Natural Language Processing. Brussels: ACL, 2018: 2001-2011.
|
12 |
TRIVEDI R, DAI H, WANG Y, et al. Know-evolve: Deep temporal reasoning for dynamic knowledge graphs [C]// Proceedings of the 34th International Conference on Machine Learning-Volume 70. Sydney: ACM, 2017: 3462-3471.
|
13 |
JIN W, ZHANG C, SZEKELY P, et al. Recurrent event network for reasoning over temporal knowledge graphs [C]// Proceedings of the Conference on Empirical Methods in Natural Language Processing. Hong Kong: ACL, 2019: 8352-8364.
|
14 |
LI Z, GUAN S, JIN X, et al. Complex evolutional pattern learning for temporal knowledge graph reasoning [C]// Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. Dublin: ACL, 2022: 290-296.
|
15 |
LI Z X, JIN X L, LI W, et al. Temporal knowledge graph reasoning based on evolutional representation learning [C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. Montréal: ACM, 2021: 408-417.
|
16 |
ZHU C, CHEN M, FAN C, et al. Learning from History: modeling temporal knowledge graphs with sequential copy-generation networks [EB/OL]. [2022-09-01]. https://arxiv.org/abs/2012.08492.
|
17 |
WARD M D, BEGER A, CUTLER J, et al. Comparing GDELT and ICEWS event data [C]// Proceedings of the ISA Annual Convention. San Francisco: ISA, 2013: 1-49.
|
18 |
DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2d knowledge graph embeddings [C]// Proceedings of the 32th AAAI Conference on Artificial Intelligence. New Orleans: AAAI, 2018: 1811-1818.
|
19 |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|