Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (10): 1915-1922    DOI: 10.3785/j.issn.1008-973X.2023.10.001
计算机技术、自动化技术     
结合静态事实和重复历史事实的动态知识图谱推理方法
林栋1(),李永强1,*(),仇翔1,冯远静1,谢碧峰2
1. 浙江工业大学 信息工程学院,浙江 杭州 310012
2. 杭州峰景科技有限公司,浙江 杭州 310000
Dynamic knowledge graph inference method combining static facts and repeated historical facts
Dong LIN1(),Yong-qiang LI1,*(),Xiang QIU1,Yuan-jing FENG1,Bi-feng XIE2
1. School of Information Engineering, Zhejiang University of Technology, Hangzhou 310012, China
2. Hangzhou Fengjing Technology Company, Hangzhou 310000, China
 全文: PDF(856 KB)   HTML
摘要:

针对现有的动态知识图谱推理方法容易忽略动态知识图谱中存在着大量静态信息和重复历史事实的问题,提出结合静态事实和重复历史事实的动态知识图谱网络方法. 该方法利用动态知识图谱中实体间隐藏的静态联系来构成静态事实,并协助动态知识图谱推理;利用历史事实构建历史词表,在预测未来时对历史词表进行查询;对历史中未发生的事实进行惩罚,提高重复历史事实的预测概率. 在2个公开的数据集上进行动态知识图谱推理实验,对比实验时选用目前主流的5个模型作为基线. 在实体预测实验中,平均倒数排名(MRR)达到0.489 1和0.530 3,Hits@10达到0.588 7和0.616 5,证明了所提方法的有效性.

关键词: 动态知识图谱静态事实重复历史事实历史惩罚实体预测    
Abstract:

A static-historical network (Sta-HisNet) method combining static facts and repeating historical facts was proposed, aiming at the problem that existing dynamic knowledge graph reasoning methods tend to overlook the vast amount of static information and repeating historical facts present in the dynamic knowledge graphs. The hidden static connections between entities in the dynamic knowledge graph were used to form static facts, assisting in the inference of the dynamic knowledge graph. Historical facts were employed to construct a historical vocabulary, and the historical vocabulary was queried when predicting the future. Facts that had not occurred in history were punished, and the probability of predicting duplicate historical facts was increased. Experiments were conducted on two public datasets for dynamic knowledge graph reasoning. Comparative experiments were performed using five mainstream models as baselines. In entity prediction experiments, the mean reciprocal rank (MRR) was 0.489 1 and 0.530 3, and Hits@10 reached 0.588 7 and 0.616 5 respectively, demonstrating the effectiveness of the proposed method.

Key words: dynamic knowledge graph    static facts    repeating historical facts    history punishment    entity prediction
收稿日期: 2022-10-17 出版日期: 2023-10-18
CLC:  TP 391  
基金资助: 国家自然科学基金资助项目(62073294);浙江省自然科学基金资助项目(LZ21F030003)
通讯作者: 李永强     E-mail: 332864925@qq.com;yqli@zjut.edu.cn
作者简介: 林栋(1998—),男,硕士生,从事知识图谱推理研究. orcid.org/0000-0003-0706-2020. E-mail: 332864925@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
林栋
李永强
仇翔
冯远静
谢碧峰

引用本文:

林栋,李永强,仇翔,冯远静,谢碧峰. 结合静态事实和重复历史事实的动态知识图谱推理方法[J]. 浙江大学学报(工学版), 2023, 57(10): 1915-1922.

Dong LIN,Yong-qiang LI,Xiang QIU,Yuan-jing FENG,Bi-feng XIE. Dynamic knowledge graph inference method combining static facts and repeated historical facts. Journal of ZheJiang University (Engineering Science), 2023, 57(10): 1915-1922.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.10.001        https://www.zjujournals.com/eng/CN/Y2023/V57/I10/1915

图 1  Sta-HisNet框架图
图 2  ICEWS18数据集的部分静态知识图谱
图 3  Sta-HisNet的历史模式流程图
数据集 实体数 关系数 训练集数 验证集数 测试集数
ICEWS18 23 033 256 373 018 45 995 69 514
GDELT 7 691 240 1734 399 238 765 305 241
表 1  不同知识图谱在公开数据集中的数量统计
模型 MRR Hits@1 Hits@3 Hits@10
ConvE 0.366 7 0.285 1 0.398 0 0.506 9
RE-NET 0.429 3 0.361 9 0.454 7 0.558 0
RE-GCN 0.463 1 0.391 2 0.497 3 0.569 3
CyGNET 0.466 9 0.405 8 0.498 2 0.571 4
CEN 0.472 6 0.418 6 0.506 1 0.579 1
Sta-HisNet 0.489 1 0.429 4 0.515 3 0.588 7
表 2  不同模型在ICEWS18数据集上的实体预测结果
模型 MRR Hits@1 Hits@3 Hits@10
ConvE 0.359 9 0.270 5 0.393 2 0.494 4
RE-NET 0.401 2 0.324 3 0.434 0 0.538 0
RE-GCN 0.481 4 0.421 6 0.523 7 0.583 5
CyGNET 0.509 2 0.445 3 0.546 9 0.609 9
CEN 0.516 8 0.457 6 0.549 7 0.612 3
Sta-HisNet 0.530 5 0.475 5 0.560 1 0.616 5
表 3  不同模型在GDELT数据集上的实体预测结果
模型 MRR Hits@1 Hits@3 Hits@10
Sta-HisNet-NON-EMB 0.479 4 0.421 2 0.506 3 0.573 5
Sta-HisNet-NON-STA 0.482 2 0.494 5 0.509 8 0.578 1
Sta-HisNet-NON-CONV 0.473 1 0.411 3 0.503 2 0.571 3
Sta-HisNet-NON-LSTM 0.463 9 0.402 1 0.498 6 0.574 2
Sta-HisNet-NON-PUN 0.458 9 0.396 5 0.483 8 0.559 2
Sta-HisNet 0.489 1 0.429 4 0.515 3 0.588 7
表 4  各模块在 ICEWS18 数据集上的消融实验结果
模型 MRR Hits@1 Hits@3 Hits@10
Sta-HisNet-NON-EMB 0.526 3 0.471 0 0.555 2 0.611 2
Sta-HisNet-NON-STA 0.518 6 0.463 6 0.546 9 0.603 9
Sta-HisNet-NON-CONV 0.523 2 0.469 1 0.556 6 0.610 5
Sta-HisNet-NON-LSTM 0.514 5 0.459 8 0.546 3 0.601 2
Sta-HisNet-NON-PUN 0.509 2 0.445 3 0.536 9 0.589 9
Sta-HisNet 0.530 5 0.475 5 0.560 1 0.616 5
表 5  各模块在 GDELT 数据集上的消融实验结果
图 4  2种方法在2个数据集上的最佳轮数对比
图 5  3种方法在2个数据集上的运行一个回合的所需时间
1 LIU Z, XIONG C, SUN M, et al. Entity-duet neural ranking: Understanding the role of knowledge graph semantics in neural information retrieval [C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Columbus: ACL, 2008: 2395-2405.
2 JIANG T, LIU T, GE T, et al. Encoding temporal information for time-aware link prediction [C]// Proceedings of the Conference on Empirical Methods in Natural Language Processing. Austin: ACL, 2016: 2350-2354.
3 BORDES A, USUNIER N, GARCIADURAN A, et al. Translating embeddings for modeling multi-relational data [C]// Proceedings of the Neural Information Processing Systems. Lake Tahoe: NIP, 2013: 2787-2795.
4 WANG Z, ZHANG J, FENG J, et al. Knowledge graph embedding by translating on hyperplanes [C]// Proceedings of the AAAI Conference on Artificial Intelligence. Quebec: AAAI, 2014, 28(1): 1112-1119.
5 DAI S, LIANG Y, LIU S, et al. Learning entity and relation embeddings with entity description for knowledge graph completion [C]// Proceedings of the 4th International Conference on Artificial Intelligence Technologies and Applications. Chengdu: JPCS, 2018: 202-205.
6 TROUILLON T, WELBL J, RIEDEL S, et al. Complex embeddings for simple link prediction [C]// Proceedings of the International Conference on Machine Learning. Hong Kong: ACM, 2016: 2071-2080.
7 SOCHER R, CHEN D, MANNING C D, et al. Reasoning with neural tensor networks for knowledge base completion [C]// Proceedings of the Neural Information Processing Systems. Lake Tahoe: NIP, 2013: 926-934.
8 SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks [C]// Proceedings of the European Semantic Web Conference. Heraklion: ESWC, 2018: 593-607.
9 KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks [EB/OL]. [2022-09-01]. https://arxiv.org/abs/1609.02907.
10 LEBLAY J, CHEKOL M W. Deriving validity time in knowledge graph [C]// Proceedings of the 27th Internation Conference on World Wide Web. Lyons: ACM, 2018: 1771-1776.
11 DASGUPTA S S, RAY S N, TALUKDAR P. Hyte: hyperplane-based temporally aware knowledge graph embedding [C]// Proceedings of the Conference on Empirical Methods in Natural Language Processing. Brussels: ACL, 2018: 2001-2011.
12 TRIVEDI R, DAI H, WANG Y, et al. Know-evolve: Deep temporal reasoning for dynamic knowledge graphs [C]// Proceedings of the 34th International Conference on Machine Learning-Volume 70. Sydney: ACM, 2017: 3462-3471.
13 JIN W, ZHANG C, SZEKELY P, et al. Recurrent event network for reasoning over temporal knowledge graphs [C]// Proceedings of the Conference on Empirical Methods in Natural Language Processing. Hong Kong: ACL, 2019: 8352-8364.
14 LI Z, GUAN S, JIN X, et al. Complex evolutional pattern learning for temporal knowledge graph reasoning [C]// Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. Dublin: ACL, 2022: 290-296.
15 LI Z X, JIN X L, LI W, et al. Temporal knowledge graph reasoning based on evolutional representation learning [C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. Montréal: ACM, 2021: 408-417.
16 ZHU C, CHEN M, FAN C, et al. Learning from History: modeling temporal knowledge graphs with sequential copy-generation networks [EB/OL]. [2022-09-01]. https://arxiv.org/abs/2012.08492.
17 WARD M D, BEGER A, CUTLER J, et al. Comparing GDELT and ICEWS event data [C]// Proceedings of the ISA Annual Convention. San Francisco: ISA, 2013: 1-49.
18 DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2d knowledge graph embeddings [C]// Proceedings of the 32th AAAI Conference on Artificial Intelligence. New Orleans: AAAI, 2018: 1811-1818.
19 HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
[1] 李海烽,张雪英,段淑斐,贾海蓉,Huizhi Liang . 融合生成对抗网络与时间卷积网络的普通话情感识别[J]. 浙江大学学报(工学版), 2023, 57(9): 1865-1875.
[2] 吴兰,崔全龙. 基于伪标签细化和语义对齐的异构域自适应[J]. 浙江大学学报(工学版), 2023, 57(9): 1876-1884.
[3] 宋昭漾,赵小强,惠永永,蒋红梅. 基于多级连续编码与解码的图像超分辨率重建算法[J]. 浙江大学学报(工学版), 2023, 57(9): 1885-1893.
[4] 何卫隆,王平,张爱华,梁婷婷,马强杰. 基于目标检测的焊接电弧形态在线定量检测[J]. 浙江大学学报(工学版), 2023, 57(9): 1903-1914.
[5] 金鑫,庄建军,徐子恒. 轻量化YOLOv5s网络车底危险物识别算法[J]. 浙江大学学报(工学版), 2023, 57(8): 1516-1526.
[6] 王慧欣,童向荣. 融合知识图谱的推荐系统研究进展[J]. 浙江大学学报(工学版), 2023, 57(8): 1527-1540.
[7] 张强,杜坤鹏,李辉,林宗发,王青. 基于虚拟中心数据源的飞机装配数据集成[J]. 浙江大学学报(工学版), 2023, 57(8): 1667-1679.
[8] 郭浩然,郭继昌,汪昱东. 面向水下场景的轻量级图像语义分割网络[J]. 浙江大学学报(工学版), 2023, 57(7): 1278-1286.
[9] 方浩杰,董红召,林少轩,罗建宇,方勇. 多特征融合的驾驶员疲劳状态检测方法[J]. 浙江大学学报(工学版), 2023, 57(7): 1287-1296.
[10] 李晓艳,王鹏,郭嘉,李雪,孙梦宇. 基于双注意力机制的多分支孪生网络目标跟踪[J]. 浙江大学学报(工学版), 2023, 57(7): 1307-1316.
[11] 杨哲,葛洪伟,李婷. 特征融合与分发的多专家并行推荐算法框架[J]. 浙江大学学报(工学版), 2023, 57(7): 1317-1325.
[12] 李云红,段姣姣,苏雪平,张蕾涛,于惠康,刘杏瑞. 基于改进生成对抗网络的书法字生成算法[J]. 浙江大学学报(工学版), 2023, 57(7): 1326-1334.
[13] 权巍,蔡永青,王超,宋佳,孙鸿凯,李林轩. 基于3D-ResNet双流网络的VR病评估模型[J]. 浙江大学学报(工学版), 2023, 57(7): 1345-1353.
[14] 焦文杰,姬帅旭,郝惠敏,黄家海,李利娜,李诗雨. 球面手腕康复机构逆运动学解新方法及应用[J]. 浙江大学学报(工学版), 2023, 57(7): 1365-1373.
[15] 韩俊,袁小平,王准,陈烨. 基于YOLOv5s的无人机密集小目标检测算法[J]. 浙江大学学报(工学版), 2023, 57(6): 1224-1233.