计算机技术 |
|
|
|
|
基于伪标签细化和语义对齐的异构域自适应 |
吴兰( ),崔全龙 |
河南工业大学 电气工程学院,河南 郑州 450001 |
|
Heterogeneous domain adaptation based on pseudo label refinement and semantic alignment |
Lan WU( ),Quan-long CUI |
College of Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China |
1 |
沈宗礼, 余建波 基于迁移学习与深度森林的晶圆图缺陷识别[J]. 浙江大学学报: 工学版, 2020, 54 (6): 1228- 1239 SHEN Zong-li, YU Jian-bo Wafer map defect recognition based on transfer learning and deep forest[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (6): 1228- 1239
|
2 |
DAY O, KHOSHGOFTAAR T M A survey on heterogeneous transfer learning[J]. Journal of Big Data, 2017, 4: 29
doi: 10.1186/s40537-017-0089-0
|
3 |
LUO Y, WEN Y, TAO D Heterogeneous multitask metric learning across multiple domains[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29 (9): 4051- 4064
doi: 10.1109/TNNLS.2017.2750321
|
4 |
REN C X, FENG J, DAI D Q, et al Heterogeneous domain adaptation via covariance structured feature translators[J]. IEEE Transactions on Cybernetics, 2021, 51 (4): 2166- 2177
doi: 10.1109/TCYB.2019.2957033
|
5 |
LI H, PAN S J, WAN R, et al. Heterogeneous transfer learning via deep matrix completion with adversarial kernel embedding [C]// Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence. [S.l.]: AAAI Press, 2019: 8602-8609.
|
6 |
TSAI Y H H, YEH Y R, WANG Y C F. Learning cross-domain landmarks for heterogeneous domain adaptation [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 5081-5090.
|
7 |
HSIEH Y T, TAO S Y, TSAI Y H H, et al. Recognizing heterogeneous cross-domain data via generalized joint distribution adaptation [C]// 2016 IEEE International Conference on Multimedia and Expo. Seattle: IEEE, 2016: 1-6.
|
8 |
YAO Y, ZHANG Y, LI X, et al. Heterogeneous domain adaptation via soft transfer network [C]// Proceedings of the 27th ACM International Conference on Multimedia. [S.l.]: ACM, 2019: 1578-1586.
|
9 |
WANG C, MAHADEVAN S. Heterogeneous domain adaptation using manifold alignment [C]// Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence. [S.l.]: AAAI Press, 2011: 1541-1546.
|
10 |
DUAN L, XU D, TSANG I W. Learning with augmented features for heterogeneous domain adaptation [C]// Proceedings of the 29th International Conference on International Conference on Machine Learning. [S.l.]: Omnipress, 2012: 667-674.
|
11 |
LI W, DUAN L, XU D, et al Learning with augmented features for supervised and semi-supervised heterogeneous domain adaptation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36 (6): 1134- 1148
doi: 10.1109/TPAMI.2013.167
|
12 |
HOFFMAN J, RODNER E, DONAHUE J, et al. Efficient learning of domain-invariant image representations[EB/OL]. [2022-10-02]. https://arxiv.org/pdf/1301.3224.pdf.
|
13 |
ZHOU J T, TSANG I W, PAN S J, et al. Heterogeneous domain adaptation for multiple classes [C]// Proceedings of the 17th International Conference on Artificial Intelligence and Statistics. Reykjavik: [s.n.], 2014: 1095-1103.
|
14 |
YAN Y, LI W, WU H, et al. Semi-supervised optimal transport for heterogeneous domain adaptation [C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. [S.l.]: AAAI Press, 2018: 2969-2975.
|
15 |
CHEN W Y, HSU T M H, TSAI Y H H, et al. Transfer neural trees for heterogeneous domain adaptation [C]// European Conference on Computer Vision. [S.l.]: Springer, 2016: 399-414.
|
16 |
LI S, XIE B, WU J, et al. Simultaneous semantic alignment network for heterogeneous domain adaptation [C]// Proceedings of the 28th ACM International Conference on Multimedia. [S.l.]: ACM, 2020: 3866-3874.
|
17 |
ZHOU Z, WANG Y, NIU C, et al Label-guided heterogeneous domain adaptation[J]. Multimedia Tools and Applications, 2022, 81: 20105- 20126
doi: 10.1007/s11042-022-12483-1
|
18 |
ALIPOUR N, TAHMORESNEZHAD J Heterogeneous domain adaptation with statistical distribution alignment and progressive pseudo label selection[J]. Applied Intelligence, 2022, 52: 8038- 8055
doi: 10.1007/s10489-021-02756-x
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|