自动化技术、电信技术 |
|
|
|
|
基于Levy flight的特征选择算法 |
朱晓恩, 郝欣, 夏顺仁 |
浙江大学 生物医学工程教育部重点实验室,浙江 杭州 310027 |
|
Feature selection algorithm based on Levy flight |
ZHU Xiao-en, HAO Xin, XIA Shun-ren |
Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China |
[1] GUYON I, ELISSEEFF A E. An introduction to variable and feature selection [J]. Journal of Machine Learning Research, 2003, 3(1): 1157-1182.
[2] AMALDI E, KANN V. On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems [J]. Theoretical Computer Science, 1998, 209(1/2): 237-260.
[3] 王娟,慈林林,姚康泽.特征选择方法综述[J].计算机工程与科学,2005,27(12): 68-71.
WANG Juan, CI Lin-lin, YAO Kang-ze. Review of feature selection method [J]. Computer Engineering and Science, 2005, 27(12): 68-71.
[4] IL-SEOK O, JIN-SEON L, BYUNG-RO M. Hybrid genetic algorithms for feature selection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(11): 1424-1437.
[5] WANG X, YANG J, TENG X, et al. Feature selection based on rough sets and particle swarm optimization [J]. Pattern Recognition Letters, 2007, 28(4): 459-471.
[6] REUNANEN J. Overfitting in making comparisons between variable selection methods [J]. Journal of Machine Learning Research, 2003, 3(1): 1371-1382.
[7] PAVLYUKEVICH I. Lévy flights, non-local search and simulated annealing [J]. Journal of Computational Physics, 2007, 226(2): 1830-1844.
[8] VISWANATHAN G M. Lévy flights and random searches [J]. Journal of Physics A: Mathematical and Theoretical, 2009, 42(43): 434003.
[9] BROWN C, LIEBOVITCH L, GLENDON R. Lévy flights in Dobe Ju/’hoansi foraging patterns [J]. Springer Netherlands, 2007, 35: 129-138.
[10] MANTEGNA R N, STANLEY H E. Stochastic process with ultraslow convergence to a Gaussian: the truncated Lévy flight [J]. Physical Review Letters, 1994, 73(22): 2946-2949.
[11] YANG X S. Nature-inspired metaheuristic algorithms [M]. 2nd ed. United Kingdom: Luniver Press, 2011: 1-6.
[12] ID P S A P. Introduction to feature selection toolbox 3: the C++ library for subset search, data modeling and classication [R]. Czech: University of Tennessee Institute of Agriculture, Czech Academy of Sciences, 2010. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|