Please wait a minute...
J4  2013, Vol. 47 Issue (4): 638-643    DOI: 10.3785/j.issn.1008-973X.2013.04.011
自动化技术、电信技术     
基于Levy flight的特征选择算法
朱晓恩, 郝欣, 夏顺仁
浙江大学 生物医学工程教育部重点实验室,浙江 杭州 310027
Feature selection algorithm based on Levy flight
ZHU Xiao-en, HAO Xin, XIA Shun-ren
Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China
 全文: PDF  HTML
摘要:

为了提高特征选择方法的计算速度,提出基于Levy flight随机过程的特征选择方法.该方法在寻优过程中定义基于启发式的分阶段搜索策略,在局部搜索行为中引入Levy flight随机过程,将Levy flight距离与搜索行为进行映射.在不同的搜索阶段,利用不同的映射区间改变搜索行为出现的概率,以该映射来控制局部搜索行为的方向和速度,从而避免了陷入局部最优的问题.实验结果表明,采用LevyFS算法克服了启发式特征选择方法的局限性,平均耗时仅为SFFS算法的1/3左右.

Abstract:

A Levy flight random process based feature selection algorithm (LevyFS) was proposed in order to improve the speed of feature selection method. A multi-stages heuristic search strategy was defined during optimization process. Levy flight random process was introduced in local search behavior, and map between Levy flight distances and search operations was defined. During different search stages, map was used to change the probability of search behavior so as to control the direction and speed of local search behavior. Then local optimum was prevented. Experimental results show that LevyFS algorithm overcomes the limitation of heuristic methods and the average time cost of LevyFS algorithm is only one-third time cost of SFFS algorithm.

出版日期: 2013-04-01
:  TP 391.41  
基金资助:

国家自然科学基金资助项目(60772092, 81101903).

通讯作者: 夏顺仁,男,教授,博导.     E-mail: srxia@zju.edu.cn
作者简介: 朱晓恩(1986—),男,硕士生,从事医学图像处理的研究. E-mail: zzdoo.zxe@gmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

朱晓恩, 郝欣, 夏顺仁. 基于Levy flight的特征选择算法[J]. J4, 2013, 47(4): 638-643.

ZHU Xiao-en, HAO Xin, XIA Shun-ren. Feature selection algorithm based on Levy flight. J4, 2013, 47(4): 638-643.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2013.04.011        http://www.zjujournals.com/eng/CN/Y2013/V47/I4/638

[1] GUYON I, ELISSEEFF A E. An introduction to variable and feature selection [J]. Journal of Machine Learning Research, 2003, 3(1): 1157-1182.

[2] AMALDI E, KANN V. On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems [J]. Theoretical Computer Science, 1998, 209(1/2): 237-260.

[3] 王娟,慈林林,姚康泽.特征选择方法综述[J].计算机工程与科学,2005,27(12): 68-71.

WANG Juan, CI Lin-lin, YAO Kang-ze. Review of feature selection method [J]. Computer Engineering and Science, 2005, 27(12): 68-71.

[4] IL-SEOK O, JIN-SEON L, BYUNG-RO M. Hybrid genetic algorithms for feature selection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(11): 1424-1437.

[5] WANG X, YANG J, TENG X, et al. Feature selection based on rough sets and particle swarm optimization [J]. Pattern Recognition Letters, 2007, 28(4): 459-471.

[6] REUNANEN J. Overfitting in making comparisons between variable selection methods [J]. Journal of Machine Learning Research, 2003, 3(1): 1371-1382.

[7] PAVLYUKEVICH I. Lévy flights, non-local search and simulated annealing [J]. Journal of Computational Physics, 2007, 226(2): 1830-1844.

[8] VISWANATHAN G M. Lévy flights and random searches [J]. Journal of Physics A: Mathematical and Theoretical, 2009, 42(43): 434003.

[9] BROWN C, LIEBOVITCH L, GLENDON R. Lévy flights in Dobe Ju/’hoansi foraging patterns [J]. Springer Netherlands, 2007, 35: 129-138.

[10] MANTEGNA R N, STANLEY H E. Stochastic process with ultraslow convergence to a Gaussian: the truncated Lévy flight [J]. Physical Review Letters, 1994, 73(22): 2946-2949.

[11] YANG X S. Nature-inspired metaheuristic algorithms [M]. 2nd ed. United Kingdom: Luniver Press, 2011: 1-6.

[12] ID P S A P. Introduction to feature selection toolbox 3: the C++ library for subset search, data modeling and classication [R]. Czech: University of Tennessee Institute of Agriculture, Czech Academy of Sciences, 2010.

[1] 杨玉婷, 史玉回, 夏顺仁. 基于讨论机制的头脑风暴优化算法[J]. J4, 2013, 47(10): 1705-1711.
[2] 孙创日,甄帅,夏顺仁. 基于吸引区域的多模态脑磁共振图像仿射配准[J]. J4, 2012, 46(9): 1722-1728.
[3] 谢迪, 童若锋, 唐敏, 冯阳. 具有高区分度的视频火焰检测方法[J]. J4, 2012, 46(4): 698-704.
[4] 李启雷, 金文光, 耿卫东. 基于无线惯性传感器的人体动作捕获方法[J]. J4, 2012, 46(2): 280-285.
[5] 戴渊明, 韦巍, 林亦宁. 基于颜色纹理特征的均值漂移目标跟踪算法[J]. J4, 2012, 46(2): 212-217.
[6] 刘晨彬,潘颖,张海石,黄峰平,夏顺仁. 基于磁共振图像的脑瘤MGMT表达状况检测算法[J]. J4, 2012, 46(1): 170-176.
[7] 钱诚, 张三元. 适用于目标跟踪的加权增量子空间学习算法[J]. J4, 2011, 45(12): 2240-2246.
[8] 吕谷来, 李建平, 李锵, 俞利兴, 朱松明, 楼建忠, 袁祎琳. 基于机器视觉的砧木定位识别方法[J]. J4, 2011, 45(10): 1766-1770.
[9] 曹颖, 郝欣, 朱晓恩, 夏顺仁. 基于自动随机游走的乳腺肿块分割算法[J]. J4, 2011, 45(10): 1753-1760.
[10] 赖小波,朱世强. 基于互相关信息的非参数变换立体匹配算法[J]. J4, 2011, 45(9): 1636-1642.
[11] 王金德, 寿黎但, 李晓燕, 陈刚. 基于多重分割捆绑特征的目标图像检索[J]. J4, 2011, 45(2): 259-266.
[12] 刘建明, 鲁东明, 葛蓉. 基于全局优化的图像修复及其在GPU上实现[J]. J4, 2011, 45(2): 247-252.
[13] 战江涛,刘强,柴春雷. 基于三维模型与Gabor小波的人脸特征点跟踪方法[J]. J4, 2011, 45(1): 30-36.
[14] 梁文锋,项志宇. 鲁棒的PTZ摄像机目标跟踪算法[J]. J4, 2011, 45(1): 59-63.
[15] 宋坤坡, 夏顺仁, 徐清. 考虑小波系数相关性的超声图像降噪算法[J]. J4, 2010, 44(11): 2203-2208.