自动化技术、电信技术 |
|
|
|
|
基于讨论机制的头脑风暴优化算法 |
杨玉婷1,2, 史玉回3, 夏顺仁1,2 |
1. 浙江大学 生物医学工程教育部重点实验室,浙江 杭州 310027; 2. 浙江省心脑血管检测技术与药效评价重点实验室,浙江 杭州 310027; 3. 西交利物浦大学 电子与电气工程系,江苏 苏州 215123 |
|
Discussion mechanism based brain storm optimization algorithm |
YANH Yu-ting1,2, SHI Yu-hui3, XIA Shun-ren1,2 |
1. Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China; 2. Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness
Appraisal,Hangzhou 310027, China; 3. Department of Electrical and Electronic Engineering, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China |
[1] EBERHART R, KENNEDY J. A new optimizer using particle swarm theory [C]∥ 6th International Symposium on Micro Machine and Human Science.
Nagoya: IEEE, 1995: 39-43.
[2] DORIGO M, CARO G D. Ant colony optimization: a new metaheuristic [C]∥Evolutionary Computation. London: McGrawHill, 1999: 1470-1477.
[3] PASSINO K M. Biomimicry of bacterial foraging for distributed optimization and control [J]. Control Systems, IEEE, 2002, 22(3): 52-67.
[4] KARABOGA D. Artificial bee colony algorithm [EB/OL]. \[20120801\]. http:∥www.scholarpedia.org/article/Artificial_bee_colony_algorithm.
[5] BONABEAU E. Swarm Intelligence [C]∥O’Reilly Emerging Technology Conference. Santa Clara: \[s.n.\],2003.
[6] CHU S C, HUANG H C, RODDICK J F, et al. Overview of algorithms for swarm intelligence [J]. Computational Collective Intelligence Technologies
and Applications, 2011, 6922/2011L: 28-41.
[7] SHI Y. Brain storm optimization algorithm [J]. Advances in Swarm Intelligence, 2011, 6728: 303-309.
[8] SHI Y. An optimization algorithm based on brainstorming process [J]. International Journal of Swarm Intelligence Research, 2011, 2(4): 35-62.
[9] ZHAN Z, ZHANG J, SHI Y, et al. A modified brain storm optimization [C]∥IEEE Congress on Evolutionary Computation. Brisbane: IEEE, 2012: 18.
[10] SHI Y, EBERHART R. A modified particle swarm optimizer [C]∥IEEE World Congress on Computational Intelligence. Anchorage: IEEE, 1998: 69-73.
[11] TING T, SHI Y, CHENG S, et al. Exponential inertia weight for particle swarm optimization [J]. Lecture Notes in Computer Science, 2012,
7331: 8390.
[12] RAGHAVENDRA R,DORIZZI B. A novel adaptive inertia particle swarm optimization (AIPSO) algorithm for improving multimodal biometric recognition
[C]∥International Conference on HandBased Biometrics. Hong Kong: IEEE, 2011: 16.
[13] LI Y J, WU T J. An adaptive ant colony system algorithm for continuousspace optimization problems [J]. Journal of Zhejiang University:
Science A, 2003, 4(1): 4046.
[14] ALAM M S, ULKABIR M W,ISLAM M M. Selfadaptation of mutation step size in artificial bee colony algorithm for continuous function
optimization [C]∥13th International Conference on Computer and Information Technology (ICCIT). Dhaka, Bangladesh: IEEE, 2010: 69-74.
[15] YAO X, LIU Y, LIN G. Evolutionary programming made faster [J]. IEEE Transactions on Evolutionary Computation, 1999, 3(2): 82-102.
[16] TORN A, ZILINSKAS A. Global optimization [M]. New York: SpringerVerlag, 1989. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|