Please wait a minute...
J4  2013, Vol. 47 Issue (10): 1705-1711    DOI: 10.3785/j.issn.1008-973X.2013.10.002
自动化技术、电信技术     
基于讨论机制的头脑风暴优化算法
杨玉婷1,2, 史玉回3, 夏顺仁1,2
1. 浙江大学 生物医学工程教育部重点实验室,浙江 杭州 310027; 2. 浙江省心脑血管检测技术与药效评价重点实验室,浙江 杭州 310027; 3. 西交利物浦大学 电子与电气工程系,江苏 苏州 215123
Discussion mechanism based brain storm optimization algorithm
YANH Yu-ting1,2, SHI Yu-hui3, XIA Shun-ren1,2
1. Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China; 2. Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness
Appraisal,Hangzhou 310027, China; 3. Department of Electrical and Electronic Engineering, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
 全文: PDF  HTML
摘要:

为了克服头脑风暴优化(BSO)算法易陷入局部最优导致早熟收敛的问题,提出新型的基于讨论机制的头脑风暴优化(DMBSO)算法.该算法运用组内讨论和组间讨论这一新机制取代BSO算法中的个体更新过程,分别控制算法的全局搜索和局部搜索能力.通过线性递减和线性递增方式调整组间讨论和组内讨论次数,使算法搜索初期加强全局搜索能力,搜索后期加强局部细致搜索能力,有效地防止早熟问题.对6个经典测试函数(BFs)的10维、20维、30维问题分别进行测试来评估DMBSO的效果.结果表明,DMBSO算法与BSO算法和经典的粒子群(PSO)算法相比,可以有效地避免陷入局部最优,稳定地找到更好的最优值,而且随着问题维度的增加,DMBSO表现出更强的鲁棒性.

Abstract:

A discussion mechanism based brain storm optimization (DMBSO) algorithm was proposed in order to solve the problem that brain storm optimization (BSO) algorithm is likely to stagnate in the local optima and result in premature convergence. DMBSO used a new mechanism with inter-group discussion and intra-group discussion to replace the process of individual updating in the original BSO algorithm in order to respectively govern the ability of global search and local search. The ability of global search was enhanced at the beginning by linearly decreasing times of inter-group discussion and increasing times of intra-group discussion, while fine search was enhanced in the end to prevent premature convergence. Empirical studies were conducted to evaluate the performances of the DMBSO algorithm for the 10D, 20D, 30D problems of six popular benchmark functions (BFs). Experimental results demonstrate that the DMBSO algorithm can avoid being stagnated in the local optima, more effectively and steadily find the better results than the original BSO algorithm and standard particle swarm optimization (PSO) algorithm, and show stronger robustness with the increasing of BFs’ dimension.

出版日期: 2013-10-01
:  TP 391.41  
基金资助:

国家自然科学基金资助项目(60772092,81101903)|国家“十一五”科技支撑计划资助项目(2012BAI10B04).

通讯作者: 夏顺仁,男,教授,博导.     E-mail: srxia@zju.edu.cn.
作者简介: 杨玉婷(1987—),女,博士生,从事智能计算及医学图像处理研究.E-mail: yangyuting@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

杨玉婷, 史玉回, 夏顺仁. 基于讨论机制的头脑风暴优化算法[J]. J4, 2013, 47(10): 1705-1711.

YANH Yu-ting, SHI Yu-hui, XIA Shun-ren. Discussion mechanism based brain storm optimization algorithm. J4, 2013, 47(10): 1705-1711.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2013.10.002        http://www.zjujournals.com/eng/CN/Y2013/V47/I10/1705

[1] EBERHART R, KENNEDY J. A new optimizer using particle swarm theory [C]∥ 6th International Symposium on Micro Machine and Human Science.

Nagoya: IEEE, 1995: 39-43.

[2] DORIGO M, CARO G D. Ant colony optimization: a new metaheuristic [C]∥Evolutionary Computation. London: McGrawHill, 1999: 1470-1477.


[3] PASSINO K M. Biomimicry of bacterial foraging for distributed optimization and control [J]. Control Systems, IEEE, 2002, 22(3): 52-67.

[4] KARABOGA D. Artificial bee colony algorithm [EB/OL]. \[20120801\]. http:∥www.scholarpedia.org/article/Artificial_bee_colony_algorithm.

[5] BONABEAU E. Swarm Intelligence [C]∥O’Reilly Emerging Technology Conference. Santa Clara: \[s.n.\],2003.

[6] CHU S C, HUANG H C, RODDICK J F, et al. Overview of algorithms for swarm intelligence [J]. Computational Collective Intelligence Technologies

and Applications, 2011, 6922/2011L: 28-41.

[7] SHI Y. Brain storm optimization algorithm [J]. Advances in Swarm Intelligence, 2011, 6728: 303-309.

[8] SHI Y. An optimization algorithm based on brainstorming process [J]. International Journal of Swarm Intelligence Research, 2011, 2(4): 35-62.


[9] ZHAN Z, ZHANG J, SHI Y, et al. A modified brain storm optimization [C]∥IEEE Congress on Evolutionary Computation. Brisbane: IEEE, 2012: 18.

[10] SHI Y, EBERHART R. A modified particle swarm optimizer [C]∥IEEE World Congress on Computational Intelligence. Anchorage: IEEE, 1998: 69-73.

[11] TING T, SHI Y, CHENG S, et al. Exponential inertia weight for particle swarm optimization [J]. Lecture Notes in Computer Science, 2012,

7331: 8390.

[12] RAGHAVENDRA R,DORIZZI B. A novel adaptive inertia particle swarm optimization (AIPSO) algorithm for improving multimodal biometric recognition

[C]∥International Conference on HandBased Biometrics. Hong Kong: IEEE, 2011: 16.

[13] LI Y J, WU T J. An adaptive ant colony system algorithm for continuousspace optimization problems [J]. Journal of Zhejiang University:

Science A, 2003, 4(1): 4046.

[14] ALAM M S, ULKABIR M W,ISLAM M M. Selfadaptation of mutation step size in artificial bee colony algorithm for continuous function

optimization [C]∥13th International Conference on Computer and Information Technology (ICCIT). Dhaka, Bangladesh: IEEE, 2010: 69-74.

[15] YAO X, LIU Y, LIN G. Evolutionary programming made faster [J]. IEEE Transactions on Evolutionary Computation, 1999, 3(2): 82-102.

[16] TORN A, ZILINSKAS A. Global optimization [M]. New York: SpringerVerlag, 1989.

[1] 朱晓恩, 郝欣, 夏顺仁. 基于Levy flight的特征选择算法[J]. J4, 2013, 47(4): 638-643.
[2] 孙创日,甄帅,夏顺仁. 基于吸引区域的多模态脑磁共振图像仿射配准[J]. J4, 2012, 46(9): 1722-1728.
[3] 谢迪, 童若锋, 唐敏, 冯阳. 具有高区分度的视频火焰检测方法[J]. J4, 2012, 46(4): 698-704.
[4] 戴渊明, 韦巍, 林亦宁. 基于颜色纹理特征的均值漂移目标跟踪算法[J]. J4, 2012, 46(2): 212-217.
[5] 李启雷, 金文光, 耿卫东. 基于无线惯性传感器的人体动作捕获方法[J]. J4, 2012, 46(2): 280-285.
[6] 刘晨彬,潘颖,张海石,黄峰平,夏顺仁. 基于磁共振图像的脑瘤MGMT表达状况检测算法[J]. J4, 2012, 46(1): 170-176.
[7] 钱诚, 张三元. 适用于目标跟踪的加权增量子空间学习算法[J]. J4, 2011, 45(12): 2240-2246.
[8] 曹颖, 郝欣, 朱晓恩, 夏顺仁. 基于自动随机游走的乳腺肿块分割算法[J]. J4, 2011, 45(10): 1753-1760.
[9] 吕谷来, 李建平, 李锵, 俞利兴, 朱松明, 楼建忠, 袁祎琳. 基于机器视觉的砧木定位识别方法[J]. J4, 2011, 45(10): 1766-1770.
[10] 赖小波,朱世强. 基于互相关信息的非参数变换立体匹配算法[J]. J4, 2011, 45(9): 1636-1642.
[11] 王金德, 寿黎但, 李晓燕, 陈刚. 基于多重分割捆绑特征的目标图像检索[J]. J4, 2011, 45(2): 259-266.
[12] 刘建明, 鲁东明, 葛蓉. 基于全局优化的图像修复及其在GPU上实现[J]. J4, 2011, 45(2): 247-252.
[13] 战江涛,刘强,柴春雷. 基于三维模型与Gabor小波的人脸特征点跟踪方法[J]. J4, 2011, 45(1): 30-36.
[14] 梁文锋,项志宇. 鲁棒的PTZ摄像机目标跟踪算法[J]. J4, 2011, 45(1): 59-63.
[15] 宋坤坡, 夏顺仁, 徐清. 考虑小波系数相关性的超声图像降噪算法[J]. J4, 2010, 44(11): 2203-2208.