Please wait a minute...
工程设计学报  2023, Vol. 30 Issue (2): 164-171    DOI: 10.3785/j.issn.1006-754X.2023.00.027
优化设计     
人机交互遥操作机器人软体手位置跟踪设计与实现
杨淦华(),曾庆军(),韩春伟,黄鑫,戴晓强
江苏科技大学 自动化学院,江苏 镇江 212100
Design and implementation of soft hand position tracking for human-computer interactive teleoperation robot
Ganhua YANG(),Qingjun ZENG(),Chunwei HAN,Xin HUANG,Xiaoqiang DAI
College of Automation, Jiangsu University of Science and Technology, Zhenjiang 212100, China
 全文: PDF(2837 KB)   HTML
摘要:

针对遥操作机器人在深海等未知环境中抓取软体物体或易碎物体的工作需求,提出了一种人机交互遥操作机器人的主从软体手位置跟踪方法。首先,介绍了主从软体手控制系统的构成与工作原理,该系统主要包括主端控制回路、通信链路和从端控制回路,用于控制软体手的抓取动作。然后,阐述了软体手指的建模过程与控制器设计,采用假设模态法进行建模,并在软体手指的位置跟踪控制中引入模型预测控制算法,以解决软体从手跟踪软体主手性能差的问题。最后,设计并研制了软体主手、软体从手及其控制系统,其中软体从手以硅胶为原料并嵌入固体材料来增大刚度,同时开展了软体从手跟踪软体主手抓握目标物体的实验。仿真结果表明,所设计的模型预测控制器能有效解决软体手指因模型失配而引起的控制精度下降问题;实验结果表明,所研制的软体从手能有效跟踪软体主手并实现目标物体的抓握,整个控制系统运行良好。研究结果为人机交互遥操作机器人软体手的跟踪控制应用提供了参考。

关键词: 遥操作机器人软体手位置跟踪模型预测控制算法    
Abstract:

Aiming at the requirements of teleoperation robots grasping soft or fragile objects in unknown environments such as the deep sea, a master-slave soft hand position tracking method for human-computer interactive teleoperation robot was proposed. Firstly, the structure and working principle of the master-slave soft hand control system were introduced. The system mainly included the master control loop, acommunication link and slave control loop, which was used to control the grasping action of the soft hand. Then, the modeling process and controller design of the soft finger were described. The hypothetical modal method was used to model the soft finger, and the model predictive control algorithm was introduced into the position tracking control of the soft finger to solve the problem of poor performance of the soft slave hand tracking soft master hand. Finally, the soft master hand, soft slave hand and their control systems were designed and developed, in which the soft slave hand was made of silicone and embedded with solid materials to increase the stiffness. Meanwhile, the experiment of soft slave hand tracking soft master hand to grasp the target object was conducted. The simulation results showed that the designed model predictive controller could effectively solve the problem of control accuracy degradation caused by model mismatch for soft fingers; the experimental results showed that the developed soft slave hand could effectively track the soft master hand to grasp the target objects, and the entire control system ran well. The research results provide a reference for the tracking control application of soft hands of human-computer interactive teleoperation robot.

Key words: teleoperation robot    soft hand    position tracking    model predictive control algorithm
收稿日期: 2022-09-13 出版日期: 2023-05-06
CLC:  TH 122  
基金资助: 国家自然科学基金资助项目(11574120);江苏省产业前瞻与共性技术项目(BE2018103);江苏省研究生科研创新计划(KYCX22_3820)
通讯作者: 曾庆军     E-mail: 971740646@qq.com;zheng28501@163.com
作者简介: 杨淦华(1995—),男,江西赣州人,硕士生,从事水下有缆机器人设计与遥操作软体手控制研究,E-mail: 971740646@qq.com,https://orcid.org/0009-0000-8554-0070
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杨淦华
曾庆军
韩春伟
黄鑫
戴晓强

引用本文:

杨淦华,曾庆军,韩春伟,黄鑫,戴晓强. 人机交互遥操作机器人软体手位置跟踪设计与实现[J]. 工程设计学报, 2023, 30(2): 164-171.

Ganhua YANG,Qingjun ZENG,Chunwei HAN,Xin HUANG,Xiaoqiang DAI. Design and implementation of soft hand position tracking for human-computer interactive teleoperation robot[J]. Chinese Journal of Engineering Design, 2023, 30(2): 164-171.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2023.00.027        https://www.zjujournals.com/gcsjxb/CN/Y2023/V30/I2/164

图1  人机交互遥操作机器人主从软体手控制系统的构成及工作原理
图2  软体食指三维模型
图3  简化的三连杆软体食指
图4  软体食指弯曲过程涉及的变量
图5  软体食指末端位置跟踪仿真结果对比
控制器跟踪误差绝对值/rad末端偏移量绝对值/mm
C11.243 20.583 5
C24.592 20.558 3
表1  2种控制器的性能评价指标对比
图6  软体主手控制系统构成
图7  主从软体手控制系统实验平台
图8  软体从手食指跟随软体主手食指
图9  软体从手跟随软体主手抓握方形物体
图10  软体从手跟随软体主手抓握圆柱形物体
图11  软体主手和软体从手食指的弯曲角度对比
时间/s食指弯曲角度/(°)
软体主手软体从手
000
0.6150
1.22816
1.85329
2.47055
3.07471
3.67275
4.27472
4.87174
5.47571
6.07275
表2  前6 s内软体主手和软体从手食指的弯曲角度
10 杨淦华,曾庆军,韩春伟,等.基于软体手的机器人遥操作人机交互系统研制[J].测控技术,2023,42(4):94-98. doi:10.19708 /j.ckjs.2023.01.204
YANG G H, ZENG Q J, HAN C W, et al. Development of robot teleoperation human-computer interaction system based on soft hand[J]. Measurement & Control Technology, 2023, 42(4): 94-98.
doi: 10.19708 /j.ckjs.2023.01.204
11 RUS D L, TOLLEY M T. Design, fabrication and control of soft robots[J]. Nature, 2015, 521(7553): 467-475.
12 高强.基于假设模态法的柔性机械臂瞬时变形响应分析[J].自动化与仪器仪表,2019(12):65-67. doi:10.14016/j.cnki.1001-9227.2019.12.065
GAO Q. Analysis of transient deformation response for flexible robotic manipulator using assumed mode method[J]. Automation and Instrumentation, 2019(12): 65-67.
doi: 10.14016/j.cnki.1001-9227.2019.12.065
13 POLYGERINOS P, WANG Z, GALLOWAY K, et al. Soft robotic glove for combined assistance and at-home rehabilitation[J]. Robotics & Autonomous Systems, 2014, 73: 135-143.
14 DEIMEL R, BROCK O. A novel type of compliant and underactuated robotic hand for dexterous grasping[J]. International Journal of Robotics Research, 2016, 35(1): 161-185.
15 GUPTA A, EPPNER C, LEVINE S, et al. Learning dexterous manipulation for a soft robotic hand from human demonstration[C]//2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, Daejeon: IEEE, 2016: 3786-3793.
16 张潇,张秋菊.基于柔性腕手的最优抓取规划研究[J].工程设计学报,2020,27(3):307-316. doi:10.3785/j.issn.1006-754X.2020.00.045
ZHANG X, ZHANG Q J. Research on optimal grasping planning based on flexible wrist-hand[J]. Chinese Journal of Engineering Design, 2020, 27(3): 307-316.
doi: 10.3785/j.issn.1006-754X.2020.00.045
17 陈罡,吴菁,金贵阳,等.驱控一体7DOF机械臂位置控制技术研究[J].机电工程,2022,39(12):1747-1754. doi:10.3969/j.issn.1001-4551.2022.12.015
CHEN G, WU J, JIN G Y, et al. Position control technology of drive integrated 7DOF manipulator[J]. Journal of Mechanical & Electrical Engineering, 2022, 39(12): 1747-1754.
doi: 10.3969/j.issn.1001-4551.2022.12.015
1 宋爱国.力觉临场感遥操作机器人(1):技术发展与现状[J].南京信息工程大学学报(自然科学版),2013,5(1):1-19. doi:10.13878/j.cnki.jnuist.2013.01.001
SONG A G. Force telepresence telerobot (1): review of the history and development[J]. Journal of Nanjing University of Information Science & Technology (Natural Science Edition), 2013, 5(1): 1-19.
doi: 10.13878/j.cnki.jnuist.2013.01.001
18 WOOSOON Y, SINGH S N. Predictive end-point trajectory control of elastic manipulators[J]. Journal of Robotic System, 1996, 13(9): 561-569.
2 倪得晶,宋爱国,李会军.基于虚拟现实的机器人遥操作关键技术研究[J].仪器仪表学报,2017,38(10):2351-2363. doi:10.3969/j.issn.0254-3087.2017.10.001
NI D J, SONG A G, LI H J. Survey on robot teleoperation based on virtual reality[J]. Chinese Journal of Scientific Instrument, 2017, 38(10): 2351-2363.
doi: 10.3969/j.issn.0254-3087.2017.10.001
3 王田苗,郝雨飞,杨兴帮,等.软体机器人:结构、驱动、传感与控制[J].机械工程学报,2017,53(13):1-13. doi:10.3901/jme.2017.13.001
WANG T M, HAO Y F, YANG X B, et al. Soft robotics: structure, actuation, sensing and control[J]. Journal of Mechanical Engineering, 2017, 53(13): 1-13.
doi: 10.3901/jme.2017.13.001
4 GERBONI G, DIODATO A, CIUTI G, et al. Feedback control of soft robot actuators via commercial flex bend sensors[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(4): 1881-1888.
5 姚建涛,陈新博,陈俊涛,等.软体机械手遥操作系统的设计与分析[J].中国机械工程,2020,31(16):1968-1977. doi:10.3969/j.issn.1004-132X.2020.16.009
YAO J T, CHEN X B, CHEN J T, et al. Design and analysis of soft manipulator teleoperation systems[J]. Chinese Mechanical Engineering, 2020, 31(16): 1968-1977.
doi: 10.3969/j.issn.1004-132X.2020.16.009
6 HAO Y F, GONG Z Y, XIE Z X, et al. Universal soft pneumatic robotic gripper with variable effective length[C]//2016 35th Chinese Control Conference (CCC), Chengdu, Jul. 27-29, 2016.
7 韩非,张道辉,赵新刚.基于弯曲度预测模型的软体手人机交互控制[J].自动化与仪表,2022,37(7):43-47. doi:10.19557/j.cnki.1001-9944.2022.07.009
HAN F, ZHANG D H, ZHAO X G. Human-computer interaction control of soft hand based on bending prediction model[J]. Automation and Instrumentation, 2022, 37(7): 43-47.
doi: 10.19557/j.cnki.1001-9944.2022.07.009
8 帅鑫,李艳君,吴铁军.一种柔性机械臂末端轨迹跟踪的预测控制算法[J].浙江大学学报(工学版),2010,44(2):259-264. doi:10.3785/j.issn.1008-973X.2010.02.009
SHUAI X, LI Y J, WU T J. Real time predictive control algorithm for endpoint trajectory tracking of flexible manipulator[J]. Journal of Zhejiang University (Engineering Science), 2010, 44(2): 259-264.
doi: 10.3785/j.issn.1008-973X.2010.02.009
9 胡万强,王红玲,吴张永,等.气动伺服机械手的预测模糊自整定PID控制研究[J].机械设计与制造,2009(1):169-171. doi:10.3969/j.issn.1001-3997.2009.01.066
HU W Q, WANG H L, WU Z Y, et al. The research of predictive fuzzy self-tuning PID control in pneumatic servo manipulator[J]. Machinery Design and Manufacture, 2009(1): 169-171.
doi: 10.3969/j.issn.1001-3997.2009.01.066
[1] 白仲航,艾琳璟. 基于功能表面驱动与可拓工具的产品人机工程问题确定方法研究[J]. 工程设计学报, 2023, 30(5): 531-544.
[2] 谢博伟,金莫辉,杨洲,段洁利,屈明宇,李锦辉. 3D打印TPU材料的力学性能及模型参数研究[J]. 工程设计学报, 2023, 30(4): 419-428.
[3] 杜雪林,易文慧,邹家华,周灿,毛立,邓利诗,刘颖. 多关节蛇形机器人的结构设计和运动实现[J]. 工程设计学报, 2023, 30(4): 438-448.
[4] 王金栋,谢宇鸿,陈燚,吴展扬. 基于河狸门齿的锤片式粉碎机锤片仿生设计[J]. 工程设计学报, 2023, 30(4): 476-484.
[5] 官俊,丁医华,葛青涛,赵帅,陆杨,张婕. 基于多材料3D打印技术的RFID天线快速制造[J]. 工程设计学报, 2023, 30(3): 288-296.
[6] 杨展,李其朋,唐威,秦可成,陈岁繁,王铠迪,刘阳,邹俊. 小型陆空变形两栖机器人的设计与分析[J]. 工程设计学报, 2023, 30(3): 325-333.
[7] 丁宇奇,杨超梁,芦烨,杨明,张佳贺,刘凯,卢宏. 基于多判别条件的储罐内爆弱顶性能评价分析[J]. 工程设计学报, 2023, 30(2): 144-153.
[8] 孙光明,张大卫,孙铭泽,徐鹏飞,陈发泽,李志军. 精密机床直线进给系统误差均化机理研究[J]. 工程设计学报, 2023, 30(2): 200-211.
[9] 段韦婕,秦慧斌,刘荣,李中一,白绍平. 可重构变刚度柔性驱动器的设计与性能分析[J]. 工程设计学报, 2023, 30(2): 262-270.
[10] 徐诗洋,吴炳晖,纪冬梅,戴新宇. 电力隧道自动巡检机器人设计与运动仿真[J]. 工程设计学报, 2023, 30(1): 32-38.
[11] 李雪萍,冉琰. 多准则模糊关联的机械产品关键元动作识别[J]. 工程设计学报, 2022, 29(5): 527-536.
[12] 张嘉宁,张明路,李满宏,张坦. 面向灰库清理的超大伸缩比机械臂结构设计与刚度优化[J]. 工程设计学报, 2022, 29(4): 430-437.
[13] 王晨,高波,杨旭. Stewart式六维力传感器轻量化设计[J]. 工程设计学报, 2022, 29(4): 419-429.
[14] 王景良,朱天成,朱龙彪,许飞云. 连续体结构的变密度拓扑优化方法研究[J]. 工程设计学报, 2022, 29(3): 279-285.
[15] 孙光明,王奕苗,万仟,弓堃,汪文津,赵坚. 考虑装配变形的精密机床床身优化设计[J]. 工程设计学报, 2022, 29(3): 318-326.