Please wait a minute...
工程设计学报  2023, Vol. 30 Issue (3): 288-296    DOI: 10.3785/j.issn.1006-754X.2023.00.041
机械设计理论与方法     
基于多材料3D打印技术的RFID天线快速制造
官俊1(),丁医华1,葛青涛1,赵帅1,陆杨1,张婕1,2()
1.江南大学 机械工程学院,江苏 无锡 214122
2.江苏省食品先进技术装备重点实验室,江苏 无锡 214122
Rapid manufacturing of RFID antennas based on multi-material 3D printing technology
Jun GUAN1(),Yihua DING1,Qingtao GE1,Shuai ZHAO1,Yang LU1,Jie ZHANG1,2()
1.School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
2.Jiangsu Province Key Laboratory of Advanced Food Technology and Equipment, Wuxi 214122, China
 全文: PDF(3953 KB)   HTML
摘要:

为了保护RFID(radio frequency identification,射频识别)天线,避免其接触外部环境而氧化、腐蚀,以及为了提高产品的防伪性、一体性与美观性,需要将RFID天线放置在产品结构表面或产品内部。为了快速制造这类产品,搭建了一台集成熔融沉积成形(fused deposition modeling, FDM)和直写成形(direct ink writing, DIW)这2种3D打印技术的多材料3D打印机,其可打印面积为220 mm×190 mm。通过ANSYS HFSS仿真软件分析了天线结构与基板结构对RFID天线辐射性能的影响;然后,选取4种RFID天线作为3D打印对象,使用导电银浆和聚乳酸(polylactic acid, PLA)分别作为天线和基板的打印材料,并对天线打印件回波损耗的实测曲线与仿真曲线进行比较。结果显示,4种RFID天线的谐振频率相对于其设计频率915 MHz均向低频方向发生了约185 MHz的偏移。根据天线打印件回波损耗的测量结果,进一步优化天线模型,并打印了一款基板厚度为3 mm、天线臂长为55 mm的内嵌式RFID天线,其满足谐振频率为915 MHz且-10 dB下带宽大于150 MHz的设计要求。研究结果验证了利用多材料3D打印技术一体化打印RFID天线及产品本体的可行性,为RFID天线的快速制造提供了参考,该工艺具有广阔的应用前景。

关键词: 多材料射频识别天线熔融沉积成形直写成形快速制造    
Abstract:

In order to protect the RFID (radio frequency identification) antenna from oxidation and corrosion due to contact with the external environment, and to improve the anti-counterfeiting, integrity and aesthetics of the product, it is necessary to place the RFID antenna on the surface of the product structure or inside the product. In order to rapidly manufacture these products, a multi-material 3D printer integrating fused deposition modeling (FDM) and direct ink writing (DIW) 3D printing technologies was built, with a printable area of 220 mm×190 mm. The influence of antenna structure and substrate structure on the radiation performance of RFID antennas was analyzed by ANSYS HFSS simulation software. Then, four types of RFID antennas were selected as 3D printing objects, and conductive silver paste and polylactic acid (PLA) were used as printing materials for the antenna and substrate, respectively. The measured and simulated curves of the return loss of the antenna print were compared. The results showed that the resonant frequencies of the four types of RFID antennas had shifted approximately 185 MHz in the low-frequency direction relative to their design frequency of 915 MHz. Based on the measurement results of the return loss of antenna prints, the antenna model was further optimized and an embedded RFID antenna with a substrate thickness of 3 mm and an antenna arm length of 55 mm was printed, which met the design requirements of resonant frequency of 915 MHz and bandwidth greater than 150 MHz at ?10 dB. The research results verify the feasibility of integrated printing of RFID antennas and product bodies by using multi-material 3D printing technology and provide a reference for the rapid manufacturing of RFID antennas. This process has broad application prospects.

Key words: multi-material    radio frequency identification antenna    fused deposition modeling    direct ink writing    rapid manufacturing
收稿日期: 2022-11-29 出版日期: 2023-07-06
CLC:  TH 122  
基金资助: 江苏省产业前瞻竞争性项目(BE2017069)
通讯作者: 张婕     E-mail: 804768109@qq.com;jiezhang@jiangnan.edu.cn
作者简介: 官 俊(1999—),男,安徽颍上人,硕士生,从事3D打印系统开发以及RFID天线设计研究,E-mail: 804768109@qq.com,https://orcid.org/0000-0001-6018-0697
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
官俊
丁医华
葛青涛
赵帅
陆杨
张婕

引用本文:

官俊,丁医华,葛青涛,赵帅,陆杨,张婕. 基于多材料3D打印技术的RFID天线快速制造[J]. 工程设计学报, 2023, 30(3): 288-296.

Jun GUAN,Yihua DING,Qingtao GE,Shuai ZHAO,Yang LU,Jie ZHANG. Rapid manufacturing of RFID antennas based on multi-material 3D printing technology[J]. Chinese Journal of Engineering Design, 2023, 30(3): 288-296.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2023.00.041        https://www.zjujournals.com/gcsjxb/CN/Y2023/V30/I3/288

图1  RFID天线一体化打印方案
图2  多材料3D打印机框架结构
图3  FDM打印喷头
图4  DIW打印喷头
图5  MKS Monster8控制板及其线路连接
参数FDM打印喷头DIW打印喷头
步进电机驱动器细分数1616
每圈所需脉冲数/个200200
齿轮齿数比5∶11∶1
转动距离/mm23.562
喷嘴直径/mm0.40.8
丝材(料筒)直径/mm1.754.7
表1  打印喷头的参数设置
图6  Klipper固件中DIW打印喷头的参数设置程序
图7  多材料3D打印机实物及其打印精度测试结果
图8  2款RFID天线模型
图9  基板厚度和天线臂长对RFID天线谐振频率的影响
图10  4种RFID天线的回波损耗仿真曲线对比
图11  RFID天线打印工艺
图12  4种RFID天线打印件及部分天线的X射线透射照片
图13  RFID天线测量夹具及测量现场
天线f0/MHzB/MHzBf0/%G/dBρ
天线1739.93144.6519.55-16.121.331
天线2736.46163.5822.21-18.761.323
天线3750.35134.6617.95-18.791.064
天线4740.96147.7519.94-29.661.025
表2  4种RFID天线的辐射性能参数测量结果
图14  4种RFID天线回波损耗的实测曲线与仿真曲线对比
图15  优化后的RFID天线打印件及其回波损耗实测曲线
1 MACDONALD E, WICKER R. Multiprocess 3D printing for increasing component functionality[J]. Science, 2016, 353(6307): aaf2093.
2 RAFIEE M, FARAHANI R D, THERRIAULT D. Multi-material 3D and 4D printing: a survey[J]. Advanced Science, 2020, 7(12): 1902307.
3 杨兆哲,孔振武,吴国民,等.3D打印聚合物纳米复合材料的研究进展[J].材料导报,2021,35(13):13177-13185. doi:10.11896/cldb.19120105
YANG Z Z, KONG Z W, WU G M, et al. Recent advances in 3D printed polymer nanocomposites[J]. Materials Reports, 2021, 35(13): 13177-13185.
doi: 10.11896/cldb.19120105
4 DUAN B. State-of-the-art review of 3D bioprinting for cardiovascular tissue engineering[J]. Annals of Biomedical Engineering, 2017, 45(1): 195-209.
5 陈亚玲,何业军.3D金属打印天线技术研究综述[J].电波科学学报,2018,33(3):266-278. doi:10.13443/j.cjors.2018043003
CHEN Y L, HE Y J. Review of 3D metal printed antenna technologies[J]. Chinese Journal of Radio Science, 2018, 33(3): 266-278.
doi: 10.13443/j.cjors.2018043003
6 HELENA D, RAMOS A, VARUM T, et al. Antenna design using modern additive manufacturing technology: a review[J]. IEEE Access, 2020, 8: 177064-177083.
7 殷戎飞,徐海黎,田为广,等.框架式3D建筑打印机控制系统设计[J].工程设计学报,2022,29(1):107-114.doi:10.3785/j.issn.1006-754X.2022.00.015
YIN R F, XU H L, TIAN W G, et al. Design of control system for frame 3D construction printer[J]. Chinese Journal of Engineering Design, 2022, 29(1): 107-114.
doi: 10.3785/j.issn.1006-754X.2022.00.015
8 ROACH D J, HAMEL C M, DUNN C K, et al. The m4 3D printer: a multi-material multi-method additive manufacturing platform for future 3D printed structures[J]. Additive Manufacturing, 2019, 29: 100819.
9 施建平,杨继全,王兴松.多材料零件3D打印技术现状及趋势[J].机械制造与自动化,2016,45(6):1-5,10. doi:10.3969/j.issn.1671-5276.2016.06.001
SHI J P, YANG J Q, WANG X S. Status and trend of 3D printing technology for heterogeneous objects[J]. Machine Building & Automation, 2016, 45(6): 1-5, 10.
doi: 10.3969/j.issn.1671-5276.2016.06.001
10 FALLAHPOUR M, ZOUGHI R. Antenna miniaturization techniques: a review of topology-and material-based methods[J]. IEEE Antennas and Propagation Magazine, 2018, 60(1): 38-50.
11 ELBOUSHI A, TELBA A, SEBAK A, et al. Electromagnetic soil characterization for undergrounded RFID system implementation[J]. Electronics, 2020, 9(1): 106.
12 姜宇琛.基于3D打印技术的柔性可穿戴介质埋藏天线的研究[D].天津:天津工业大学,2019:1-5.
JIANG Y C. Research on flexible wearable dielectric embedding antenna based on 3D printing technology[D]. Tianjin: Tiangong University, 2019: 1-5.
13 ZHANG P F, WANG Z X, LI J R, et al. From materials to devices using fused deposition modeling: a state-of-art review[J]. Nanotechnology Reviews, 2020, 9(1): 1594-1609.
14 杨钦杰,李佳汶,李明,等.熔融沉积3D打印设备研究进展[J].中国塑料,2022,36(2):157-171. doi:10.19491/j.issn.1001-9278.2022.02.022
YANG Q J, LI J W, LI M, et al. Research progress in fused deposition modeling 3D printing equipment[J]. China Plastics, 2022, 36(2): 157-171.
doi: 10.19491/j.issn.1001-9278.2022.02.022
15 RIZWAN M, KHAN M W A, HE H, et al. Flexible and stretchable 3D printed passive UHF RFID tag[J]. Electronics Letters, 2017, 53(15): 1054-1056.
16 RAMIREZ R A, ROJAS-NASTRUCCI E A, WELLER T M. UHF RFID tags for on-/off-metal applications fabricated using additive manufacturing[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 1635-1638.
17 DEL-MAZO-BARBARA L, GINEBRA M. Rheological characterisation of ceramic inks for 3D direct ink writing: a review[J]. Journal of the European Ceramic Society, 2021, 41(16): 18-33.
18 张晓琴,秦世煜,姬忠莹,等.3D直书写打印聚合物及其复合材料[J].聊城大学学报(自然科学版),2020,33(3):41-50,56.
ZHANG X Q, QIN S Y, JI Z Y, et al. 3D direct ink writing of polymers and their composites[J]. Journal of Liaocheng University(Natural Science Edition), 2020, 33(3): 41-50, 56.
19 刘智,赵永强.3D打印技术设备的现状与发展[J].锻压装备与制造技术,2020,55(6):7-13.
LIU Z, ZHAO Y Q. The current situation and development of 3D printing technology equipment[J]. China Metalforming Equipment & Manufacturing Technology, 2020, 55(6): 7-13.
[1] 白仲航,艾琳璟. 基于功能表面驱动与可拓工具的产品人机工程问题确定方法研究[J]. 工程设计学报, 2023, 30(5): 531-544.
[2] 谢博伟,金莫辉,杨洲,段洁利,屈明宇,李锦辉. 3D打印TPU材料的力学性能及模型参数研究[J]. 工程设计学报, 2023, 30(4): 419-428.
[3] 杜雪林,易文慧,邹家华,周灿,毛立,邓利诗,刘颖. 多关节蛇形机器人的结构设计和运动实现[J]. 工程设计学报, 2023, 30(4): 438-448.
[4] 王金栋,谢宇鸿,陈燚,吴展扬. 基于河狸门齿的锤片式粉碎机锤片仿生设计[J]. 工程设计学报, 2023, 30(4): 476-484.
[5] 杨展,李其朋,唐威,秦可成,陈岁繁,王铠迪,刘阳,邹俊. 小型陆空变形两栖机器人的设计与分析[J]. 工程设计学报, 2023, 30(3): 325-333.
[6] 丁宇奇,杨超梁,芦烨,杨明,张佳贺,刘凯,卢宏. 基于多判别条件的储罐内爆弱顶性能评价分析[J]. 工程设计学报, 2023, 30(2): 144-153.
[7] 杨淦华,曾庆军,韩春伟,黄鑫,戴晓强. 人机交互遥操作机器人软体手位置跟踪设计与实现[J]. 工程设计学报, 2023, 30(2): 164-171.
[8] 孙光明,张大卫,孙铭泽,徐鹏飞,陈发泽,李志军. 精密机床直线进给系统误差均化机理研究[J]. 工程设计学报, 2023, 30(2): 200-211.
[9] 段韦婕,秦慧斌,刘荣,李中一,白绍平. 可重构变刚度柔性驱动器的设计与性能分析[J]. 工程设计学报, 2023, 30(2): 262-270.
[10] 徐诗洋,吴炳晖,纪冬梅,戴新宇. 电力隧道自动巡检机器人设计与运动仿真[J]. 工程设计学报, 2023, 30(1): 32-38.
[11] 李雪萍,冉琰. 多准则模糊关联的机械产品关键元动作识别[J]. 工程设计学报, 2022, 29(5): 527-536.
[12] 张嘉宁,张明路,李满宏,张坦. 面向灰库清理的超大伸缩比机械臂结构设计与刚度优化[J]. 工程设计学报, 2022, 29(4): 430-437.
[13] 王晨,高波,杨旭. Stewart式六维力传感器轻量化设计[J]. 工程设计学报, 2022, 29(4): 419-429.
[14] 王景良,朱天成,朱龙彪,许飞云. 连续体结构的变密度拓扑优化方法研究[J]. 工程设计学报, 2022, 29(3): 279-285.
[15] 孙光明,王奕苗,万仟,弓堃,汪文津,赵坚. 考虑装配变形的精密机床床身优化设计[J]. 工程设计学报, 2022, 29(3): 318-326.