Please wait a minute...
工程设计学报  2023, Vol. 30 Issue (4): 438-448    DOI: 10.3785/j.issn.1006-754X.2023.00.051
机器人与机构设计     
多关节蛇形机器人的结构设计和运动实现
杜雪林(),易文慧,邹家华,周灿,毛立,邓利诗,刘颖
湖南工学院 智能制造与机械工程学院,湖南 衡阳 421002
Structure design and motion realization of multi-joint snakelike robot
Xuelin DU(),Wenhui YI,Jiahua ZOU,Can ZHOU,Li MAO,Lishi DENG,Ying LIU
School of Intelligent Manufacturing and Mechanical Engineering, Hunan Institute of Technology, Hengyang 421002, China
 全文: PDF(5686 KB)   HTML
摘要:

针对蛇形机器人整体研制的关键问题,包括材料选取、结构设计和运动实现等,研制了一种新型的多关节蛇形机器人。该蛇形机器人由11个二自由度正交关节构成,可在保证灵活性的同时实现三维高仿生运动。采用蛇形曲线设计了蛇形机器人的蜿蜒、蠕动和翻滚等基本步态,并进一步提出了改进的越障步态。同时,在V-REP软件中对蛇形机器人的步态进行运动仿真,比较了不同步态的运动轨迹和运动效率。最后,通过蛇形机器人样机步态实验,对步态模型中各个控制参数对蛇形机器人运动波形和运动速度的影响进行了分析,验证了蛇形机器人本体结构与控制系统的可靠性。研究结果对实现蛇形机器人的步态规划与运动控制具有重要的理论意义与实际指导价值。

关键词: 蛇形机器人蛇形曲线基本步态越障步态步态实验    
Abstract:

Aiming at the key issues in the overall development of snakelike robots, including material selection, structure design and motion realization, a new multi-joint snakelike robot was developed. This snakelike robot was composed of 11 two-degree-of-freedom orthogonal joints, which could achieve three-dimensional high biomimetic motion while ensuring flexibility. The basic gaits of snakelike robot such as meandering, wriggling and tumbling were designed by using the serpentine curve, and an improved obstacle surmounting gait was further proposed. At the same time, the gaits of the snakelike robot were simulated in the V-REP software, and the motion trajectories and efficiency of different gaits were compared. Finally, through the gait experiment of the snakelike robot prototype, the influence of each control parameter in the gait model on the motion waveform and speed of the snakelike robot was analyzed, and the reliability of the body structure and control system of the snakelike robot was verified. The research results have important theoretical significance and practical guiding value for realizing the gait planning and motion control of snakelike robots.

Key words: snakelike robot    serpentine curve    basic gait    obstacle surmounting gait    gait experiment
收稿日期: 2022-12-29 出版日期: 2023-09-04
CLC:  TH 122  
基金资助: 湖南省自然科学基金面上项目(2021JJ30467)
作者简介: 杜雪林(1984—),男,河北石家庄人,讲师,博士,从事柔性多体动力学、空间网状天线形态分析等研究,E-mail: du_xuelin@126.com,https://orcid.org/0000-0001-7700-9079
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杜雪林
易文慧
邹家华
周灿
毛立
邓利诗
刘颖

引用本文:

杜雪林,易文慧,邹家华,周灿,毛立,邓利诗,刘颖. 多关节蛇形机器人的结构设计和运动实现[J]. 工程设计学报, 2023, 30(4): 438-448.

Xuelin DU,Wenhui YI,Jiahua ZOU,Can ZHOU,Li MAO,Lishi DENG,Ying LIU. Structure design and motion realization of multi-joint snakelike robot[J]. Chinese Journal of Engineering Design, 2023, 30(4): 438-448.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2023.00.051        https://www.zjujournals.com/gcsjxb/CN/Y2023/V30/I4/438

图1  多关节蛇形机器人结构示意
图2  蛇形机器人正交关节结构
图3  蛇形机器人的头部和尾部结构
图4  蛇形机器人关节外壳结构
图5  蛇形机器人头部和尾部外壳结构
图6  采用不同材料制作的蛇形机器人关节
图7  蛇形机器人运动控制流程
图8  Lobot Servo Control软件界面
图9  蛇形机器人遥控器端控制流程
图10  蛇形机器人样机
参数量值
关节数量11个
关节外壳直径95 mm
总长度1 122 mm
总质量2 055 g
表1  蛇形机器人样机的相关技术参数
图11  简化的Serpenoid曲线拟合示意
图12  蜿蜒运动中蛇形机器人偏航关节转角的变化曲线
图13  水平转角不同时蛇形机器人偏航关节转角的变化曲线
图14  蠕动运动中蛇形机器人俯仰关节转角的变化曲线
图15  翻滚运动中蛇形机器人关节转角的变化曲线
图16  越障运动中蛇形机器人俯仰关节转角的变化曲线
图17  不同步态下蛇形机器人质心的运动轨迹
图18  不同振幅下蛇形机器人的蜿蜒运动轨迹
图19  不同周期下蛇形机器人的蜿蜒运动轨迹
图20  蛇形机器人越障过程仿真结果

时间

t/s

关节0关节2关节4关节6关节8关节10
1-30-15153015-15
23015-15-30-1515
表2  蜿蜒运动中蛇形机器人偏航关节转角设置 (°)
图21  蛇形机器人蜿蜒运动实验现场
时间t/s关节1关节3关节5关节7关节9
10-15-30150
201530-150
表3  蠕动运动中蛇形机器人俯仰关节角度设置 ( (°))
图22  蛇形机器人蠕动运动实验现场
时间t/s关节0关节1关节2关节3关节4关节5
1300-300300
20300-30030
3-300300-300
40-300300-30
5300-300300
时间t/s关节6关节7关节8关节9关节10
1-300300-30
20-300300
3300-30030
40300-300
5-30030030
表4  翻滚运动中蛇形机器人关节转角设置 ( (°))
图23  蛇形机器人翻滚运动实验现场
越障种类时间t/s关节1关节3关节5关节7关节9
头部越障1-36-2736-36-36
2-36027-22.5-36
3-360000
身体越障122.5-2736-36-36
2-9-2727270
322.50000
尾部越障10368-2727
2-31.5731.522.527
3000027
表5  越障运动中蛇形机器人俯仰关节转角设置 ( (°))
图24  蛇形机器人越障运动实验现场
1 苏中,张双彪,李兴城.蛇形机器人的研究与发展综述[J].中国机械工程,2015,26(3):414-425. doi:10.3969/j.issn.1004-132X.2015.03.022
SU Z, ZHANG S B, LI X C. Present situation and development tendency of snake-like robots[J]. China Mechanical Engineering, 2015, 26(3): 414-425.
doi: 10.3969/j.issn.1004-132X.2015.03.022
2 LILJEBÄCK P, PETTERSEN K Y, STAVDAHL Ø, et al. A review on modelling, implementation, and control of snake robots[J]. Robotics and Autonomous Systems, 2012, 60(1): 29-40.
3 LIU J D, TONG Y C, LIU J G. Review of snake robots in constrained environments[J]. Robotics and Autonomous Systems, 2021, 141: 103785.
4 张军豪,陈英龙,杨双喜,等.蛇形机器人:仿生机理,结构驱动和建模控制[J].机械工程学报,2022,58(7):75-92. doi:10.3901/jme.2022.07.075
ZHANG J H, CHEN Y L, YANG S X, et al. Snake robotics: bionic mechanism, structure, actuation, modeling and control[J]. Journal of Mechanical Engineering, 2022, 58(7): 75-92.
doi: 10.3901/jme.2022.07.075
5 张东.复杂环境下仿蛇机器人三维运动建模与优化控制[D].北京:北京化工大学,2020:1-16.
ZHANG D. Modeling and optimize control of 3-D gaits for snakelike robots in complexity environments[D]. Beijing: Beijing University of Chemical Technology, 2020: 1-16.
6 刘旭鹏,郜志英,臧勇,等.蛇形机器人蜿蜒运动的摩擦机理及推进条件[J].机械工程学报,2021,57(21):189-201. doi:10.3901/jme.2021.21.189
LIU X P, GAO Z Y, ZANG Y, et al. Tribological mechanism and propulsion conditions for creeping locomotion of the snake-like robot[J]. Journal of Mechanical Engineering, 2021, 57(21): 189-201.
doi: 10.3901/jme.2021.21.189
7 周云虎.轻型蛇形机器人系统设计及分段运动规划策略研究[D].哈尔滨:哈尔滨工业大学,2021:10-12.
ZHOU Y H. Lightweight snake robot system design and segmentd motion planning strategy research[D]. Harbin: Harbin Institute of Technology, 2021: 10-12.
8 LILJEBÄCK P, STAVDAHL Ø, BEITNES A. SnakeFighter: development of a water hydraulic fire fighting snake robot[C]//2006 9th International Conference on Control, Automation, Robotics and Vision, Singapore, Dec. 5-8, 2006.
9 OHNO H, HIROSE S. Pneumatically-driven active cord mechanism “Slim Slime Robot”[J]. Journal of Robotics and Mechatronics, 2014, 26(1): 105-106.
10 ENNER F, ROLLINSON D, CHOSET H. Simplified motion modeling for snake robots[C]//2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, May 14-18, 2012.
11 张丹凤,李斌,王立岩.基于连续体模型的蛇形机器人质心速度跟踪控制方法[J].机器人,2017,39(6):829-837. doi:10.13973/j.cnki.robot.2017.0829
ZHANG D F, LI B, WANG L Y. Tracking control method of the centre-of-mass velocity for a snake-like robot based on the continuum model[J]. Robot, 2017, 39(6): 829-837.
doi: 10.13973/j.cnki.robot.2017.0829
12 郁树梅,马书根,李斌,等.蛇形机器人步态产生及步态分析[J].机器人,2011,33(3):371-378. doi:10.3724/sp.j.1218.2011.00371
YU S M, MA S G, LI B, et al. Gait generation and analysis for snake-like robots[J]. Robot, 2011, 33(3): 371-378.
doi: 10.3724/sp.j.1218.2011.00371
13 YAN B Z, SHI D X, WEI J, et al. HiBot: a generic ROS-based robot-remote-control framework[C]//2017 2nd Asia-Pacific Conference on Intelligent Robot Systems (ACIRS), Wuhan, Jun. 16-18, 2017.
14 HIROSE S. Biologically inspired robots: snake-like locomotors and manipulators[M]. London: Oxford University Press, 1993: 1-49.
15 MA S. Analysis of snake movement forms for realization of snake-like robots[C]//1999 IEEE International Conference on Robotics and Automation, Detroit, MI, May 10-15, 1999.
16 MARVI H, HU D L. Friction enhancement in concertina locomotion of snakes[J]. Journal of the Royal Society Interface, 2012, 9(76): 3067-3080.
17 MARVI H, BRIDGES J, HU D L. Snakes mimic earthworms: propulsion using rectilinear travelling waves[J]. Journal of the Royal Society Interface, 2013, 10(84): 20130188.
18 MARVI H, GONG C, GRAVISH N, et al. Sidewinding with minimal slip: snake and robot ascent of sandy slopes[J]. Science, 2014, 346(6206): 224-229.
19 YE C L, MA S G, LI B, et al. Turning and side motion of snake-like robot[C]//IEEE International Conference on Robotics and Automation, New Orleans, LA, Apr. 26-May 1, 2004.
20 HATTON R L, CHOSET H. Generating gaits for snake robots: annealed chain fitting and key frame wave extraction[J]. Autonomous Robots, 2009, 28(3): 271-281.
21 CAO Z C, ZHANG D, ZHOU M C. Modeling and control of hybrid 3-D gaits of snake-like robots[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(10): 4603-4612.
[1] 白仲航,艾琳璟. 基于功能表面驱动与可拓工具的产品人机工程问题确定方法研究[J]. 工程设计学报, 2023, 30(5): 531-544.
[2] 谢博伟,金莫辉,杨洲,段洁利,屈明宇,李锦辉. 3D打印TPU材料的力学性能及模型参数研究[J]. 工程设计学报, 2023, 30(4): 419-428.
[3] 王金栋,谢宇鸿,陈燚,吴展扬. 基于河狸门齿的锤片式粉碎机锤片仿生设计[J]. 工程设计学报, 2023, 30(4): 476-484.
[4] 官俊,丁医华,葛青涛,赵帅,陆杨,张婕. 基于多材料3D打印技术的RFID天线快速制造[J]. 工程设计学报, 2023, 30(3): 288-296.
[5] 杨展,李其朋,唐威,秦可成,陈岁繁,王铠迪,刘阳,邹俊. 小型陆空变形两栖机器人的设计与分析[J]. 工程设计学报, 2023, 30(3): 325-333.
[6] 丁宇奇,杨超梁,芦烨,杨明,张佳贺,刘凯,卢宏. 基于多判别条件的储罐内爆弱顶性能评价分析[J]. 工程设计学报, 2023, 30(2): 144-153.
[7] 杨淦华,曾庆军,韩春伟,黄鑫,戴晓强. 人机交互遥操作机器人软体手位置跟踪设计与实现[J]. 工程设计学报, 2023, 30(2): 164-171.
[8] 孙光明,张大卫,孙铭泽,徐鹏飞,陈发泽,李志军. 精密机床直线进给系统误差均化机理研究[J]. 工程设计学报, 2023, 30(2): 200-211.
[9] 段韦婕,秦慧斌,刘荣,李中一,白绍平. 可重构变刚度柔性驱动器的设计与性能分析[J]. 工程设计学报, 2023, 30(2): 262-270.
[10] 徐诗洋,吴炳晖,纪冬梅,戴新宇. 电力隧道自动巡检机器人设计与运动仿真[J]. 工程设计学报, 2023, 30(1): 32-38.
[11] 李雪萍,冉琰. 多准则模糊关联的机械产品关键元动作识别[J]. 工程设计学报, 2022, 29(5): 527-536.
[12] 张嘉宁,张明路,李满宏,张坦. 面向灰库清理的超大伸缩比机械臂结构设计与刚度优化[J]. 工程设计学报, 2022, 29(4): 430-437.
[13] 王晨,高波,杨旭. Stewart式六维力传感器轻量化设计[J]. 工程设计学报, 2022, 29(4): 419-429.
[14] 王景良,朱天成,朱龙彪,许飞云. 连续体结构的变密度拓扑优化方法研究[J]. 工程设计学报, 2022, 29(3): 279-285.
[15] 孙光明,王奕苗,万仟,弓堃,汪文津,赵坚. 考虑装配变形的精密机床床身优化设计[J]. 工程设计学报, 2022, 29(3): 318-326.