Please wait a minute...
工程设计学报  2023, Vol. 30 Issue (2): 144-153    DOI: 10.3785/j.issn.1006-754X.2023.00.025
设计基础理论与方法     
基于多判别条件的储罐内爆弱顶性能评价分析
丁宇奇(),杨超梁,芦烨(),杨明,张佳贺,刘凯,卢宏
东北石油大学 机械科学与工程学院,黑龙江 大庆 163318
Evaluation and analysis of implosion weak roof performance of storage tank based on multiple discriminant conditions
Yuqi DING(),Chaoliang YANG,Ye LU(),Ming YANG,Jiahe ZHANG,Kai LIU,Hong LU
College of Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318, China
 全文: PDF(4732 KB)   HTML
摘要:

储罐在偶发爆炸载荷作用下易发生结构破坏,致使罐内储液流出,从而造成巨大的经济损失,但采用弱顶设计的储罐在此类事故发生时能减少损失。为此,以立式拱顶储罐为研究对象,综合考虑储罐破坏过程中内部压力、应力以及裂纹扩展等因素,建立了基于多判别条件的储罐内爆弱顶性能评价方法。同时,通过数值模拟手段,采用CEL(coupled Euler-Lagrange, 耦合欧拉-拉格朗日)流固耦合算法建立了储罐内爆三维有限元模型,对内爆载荷作用下储罐的破坏过程及不同影响因素下储罐的弱顶性能开展研究。计算结果表明:在基于压力和应力的弱顶性能评价中,储罐在90°,135°,180°位置处的峰值压力比大于1,满足弱顶要求;在基于结构断裂的弱顶性能评价中,由于裂纹延伸到液位以下,2条裂纹分别穿过液位1.99 m和5.21 m,储罐不具备弱顶性能。随着储罐容积的增加、液位的升高,储罐的弱顶性能增强。根据计算所得结果,采取在液位以上设置防护圈的方法对储罐进行优化,使得非弱顶储罐满足弱顶结构设计要求。所建立的储罐弱顶性能评价条件可为储罐的弱顶设计及分析提供参考。

关键词: 储罐内爆结构破坏裂纹弱顶    
Abstract:

Storage tanks are prone to structural failure under occasional explosive loads, resulting in the outflow of liquid inside the tank and causing huge economic losses. However, storage tanks designed with weak roofs can reduce losses in such accidents. Therefore, taking the vertical vault storage tank as the research object, taking into account factors such as internal pressure, stress and crack propagation during the tank failure process, a method for evaluating the implosion weak roof performance of storage tank based on multiple discriminant conditions was established. Meanwhile, by means of numerical simulation, a three-dimensional finite element model of storage tank implosion was established using the CEL (coupled Euler-Lagrange) fluid-structure coupling algorithm. The failure process of storage tank under implosion load and the weak roof performance of storage tank under different influencing factors were studied. The calculation results showed that in the evaluation of weak roof performance based on pressure and stress, the peak pressure ratios of the storage tank at positions of 90°, 135° and 180° were greater than 1, meeting the requirements of weak roof; in the evaluation of weak roof performance based on structural fracture, due to the extension of cracks below the liquid level, two cracks passed through the liquid level of 1.99 m and 5.21 m, respectively, and the storage tank did not have weak roof performance. As the volume and liquid level of the storage tank increased, the weak roof performance of storage tank increased. Based on the calculated results, the method of setting a protective ring above the liquid level was adopted to optimize the storage tank, so that the non-weak roof storage tank met the design requirements of the weak roof structure. The established evaluation conditions for the weak roof performance of storage tanks can provide reference for the design and analysis of the weak roof of storage tanks.

Key words: storage tank    implosion    structural failure    crack    weak roof
收稿日期: 2022-08-25 出版日期: 2023-05-06
CLC:  TH 122  
基金资助: 国家自然科学基金资助项目(51604080);黑龙江省博士后科研启动基金资助项目(LBH-Q20082);黑龙江省自然科学基金资助项目(LH2022A003)
通讯作者: 芦烨     E-mail: jslx2004@163.com;luye_nepu@163.com
作者简介: 丁宇奇(1982—),男,黑龙江肇东人,教授,博士,从事油气储运装备强度评定与优化分析研究,E-mail: jslx2004@163.com,https://orcid.org/0000-0002-6100-8423
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
丁宇奇
杨超梁
芦烨
杨明
张佳贺
刘凯
卢宏

引用本文:

丁宇奇,杨超梁,芦烨,杨明,张佳贺,刘凯,卢宏. 基于多判别条件的储罐内爆弱顶性能评价分析[J]. 工程设计学报, 2023, 30(2): 144-153.

Yuqi DING,Chaoliang YANG,Ye LU,Ming YANG,Jiahe ZHANG,Kai LIU,Hong LU. Evaluation and analysis of implosion weak roof performance of storage tank based on multiple discriminant conditions[J]. Chinese Journal of Engineering Design, 2023, 30(2): 144-153.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2023.00.025        https://www.zjujournals.com/gcsjxb/CN/Y2023/V30/I2/144

图1  内爆载荷作用下储罐结构破坏示意
图2  立式拱顶储罐结构示意
图3  储罐内爆三维有限元模型
图4  不同时刻储罐内压力分布云图
观测点环向角度
0°(n=1)45°(n=2)90°(n=3)135°(n=4)180°(n=5)
压力比时间比压力比时间比压力比时间比压力比时间比压力比时间比
An /Bn0.212.000.581.582.851.322.741.012.751.12
An /Cn1.420.891.240.943.110.932.710.853.540.86
An /Dn5.820.333.510.474.350.623.130.664.040.71
An /En4.760.164.370.264.400.462.780.423.480.48
Bn /Cn6.660.442.150.591.090.701.020.841.290.77
Bn /Dn27.470.166.030.301.520.471.160.651.470.63
Bn /En22.440.087.540.161.550.341.030.431.260.43
表1  储罐各观测点的峰值压力及其出现时间的比值
图5  不同时刻储罐内应力分布云图
观测点环向角度
0°(n=1)45°(n=2)90°(n=3)135°(n=4)180°(n=5)
时间/ms应力/MPa时间/ms应力/MPa时间/ms应力/MPa时间/ms应力/MPa时间/ms应力/MPa
An3.243.26.043.413.2216.018.2212.020.6198.0
Bn1.6143.03.827.010.079.018.0139.018.4176.0
Cn3.684.56.475.914.256.921.4154.024.0183.0
Dn9.851.512.820.921.2105.027.688.529.038.1
En20.483.423.474.829.0167.043.073.843.030.3
表2  储罐各观测点的峰值压力出现时间及对应应力
图6  不同时刻储罐裂纹扩展情况
裂纹初始出现时刻穿过液位时刻终止时刻
时刻/ms端点高度/m长度/m时刻/ms高度/m长度/m时刻/ms高度/m长度/m
裂纹1(30°)8.49.92(上)1.9716.412.48(上)6.6723.212.488.74
7.95(下)5.72(下)3.76
裂纹2(60°)9.09.89(上)1.5016.212.37(上)6.6624.412.4811.96
8.93(下)5.71(下)0.54
表3  不同时刻裂纹的长度
判别条件评价指标容积/m3
1 0003 0005 000

第1条

判别条件

最小峰值压力比(除An /Bn 外)0.721.021.070.831.201.230.951.311.43
峰值压力出现时间比0.840.920.611.020.440.97
应力/MPa320
是否具备弱顶性能

第2条

判别条件

裂纹上端点高度/m12.4812.48017.5016.47017.4617.840
裂纹下端点高度/m0.320.54000000.330
裂纹长度/m12.1611.9617.5016.4717.4617.51
液位高度/m0.505.750.508.400.508.40
裂纹下端点与液位高度差值/m-0.18-5.21-0.50-8.40-0.50-8.07
是否具备弱顶性能
基于多判别条件的弱顶性能评价结果
表4  不同影响因素下储罐的弱顶性能评价结果
图7  储罐弱顶性能随容积与液位高度的变化曲线
图8  非弱顶储罐优化过程示意
容积/m3L1/mT1/mL2/mT2/m液位高度/m防护圈1安装高度/m防护圈2安装高度/m
1 0000.0750.0080.0750.0085.759.1257.250
3 0000.1050.0080.0630.0088.4013.10010.400
5 0000.1300.0080.0800.0088.4013.10010.400
表5  不同容积储罐的防护圈尺寸
表6  优化前后储罐的弱顶性能评价结果对比
1 刘巨保,门建斌,丁宇奇,等. 2万m3立式网壳顶储罐破坏分析及弱顶性能评价[J].石油化工设备,2013,42(3):48-53.
LIU J B, MENG J B, DING Y Q, et al. Failure analysis and evaluation for weak roof performance of 2×104 m3 vertical latticed shell roof storage tank[J]. Petro-chemical Equipment, 2013, 42(3): 48-53.
2 丁宇奇.立式拱顶储罐超压破坏机理与弱顶结构研究[D].大庆:东北石油大学,2014:111-115.
DING Y Q. Research on broken mechanism of vertical dome roof tank overpressure and weak roof structure[D]. Daqing: Northeast Petroleum University, 2014: 111-115.
3 DING Y, DAI Z, LU Y, et al. The influence of tank roof form on weak roof performance based on preventing environmental pollution[J]. Ekoloji, 2019, 28(107): 3773-3781.
4 李成兵,雷鹏.5000 m3立式拱顶储罐应力分析与弱顶性能评价[J].工程设计学报,2020,27(2):182-190.
LI C B, LEI P. Stress analysis and weak roof performance evaluation for 5000 m3 vertical dome storage tank[J]. Chinese Journal of Engineering Design, 2020, 27(2): 182-190.
5 万昊天.固定顶储罐弱壁防护结构设计及优化研究[D].大连:大连理工大学,2015:4-13.
WAN H T. Design and optimization of weak wall protective structure of fixed roof storage tank[D]. Dalian: Dalian University of Technology, 2015: 4-13.
6 刘博,唐辉永,张学恭.微内压大型立式圆筒储罐设计原理及应用分析[J].化工设备与管道,2014,51(5):1-4. doi:10.3969/j.issn.1009-3281.2014.05.001
LIU B, TANG H Y, ZHANG X G. Design principle and application analysis of large vertical cylindrical tank subjected to minor internal pressure[J]. Process Equipment & Piping, 2014, 51(5): 1-4.
doi: 10.3969/j.issn.1009-3281.2014.05.001
7 丁旭明,李明波.设计压力对储罐结构设计的影响[J].油气储运,2018,37(5):563-567.
DING X M, LI M B. The effect of design pressure on tank structure design[J]. Oil & Gas Storage and Transportation, 2018, 37(5): 563-567.
8 万昊天,喻健良,焦国栋.静压下固定顶储罐弱壁结构保护性能研究[J].河南科技,2017(9):71-74. doi:10.3969/j.issn.1003-5168.2017.09.036
WAN H T, YU J L, JIAO G D. Study of weak wall structure of fixed roof storage tank under static pressure[J]. Henan Science and Technology, 2017(9): 71-74.
doi: 10.3969/j.issn.1003-5168.2017.09.036
9 刘巨保,许蕴博.基于GB 50341标准设计的立式拱顶储罐弱顶结构分析与评价[J].化工机械,2011,38(4):423-427.
LIU J B, XU Y B. Weak-roof structure analysis and evaluation of vertical dome tank based on GB 50341[J]. Chemical Engineering & Machinery, 2011, 38(4): 423-427.
10 丁宇奇,刘巨保,武铜柱,等.基于三维模型的立式拱顶储罐应力分析与弱顶影响因素分析[J].压力容器,2011,28(12):11-17. doi:10.3969/j.issn.1001-4837.2011.12.003
DING Y Q, LIU J B, WU T Z, et al. Stress analysis of vertical dome tank and influencing factors analysis of weak roof based on three-dimensional model[J]. Pressure Vessel Technology, 2011, 28(12): 11-17.
doi: 10.3969/j.issn.1001-4837.2011.12.003
11 张宇.池火灾场景下拱顶油罐失效过程的数值模拟与实验研究[D].鞍山:辽宁科技大学,2021:17-18.
ZHANG Y. Numerical simulation and experimental study on failure process of dome roof oil tank under pool fire scenario[D]. Anshan: University of Science and Technology Liaoning, 2021: 17-18.
12 李永华.事故多米诺效应与罐区安全设计探讨[J]. 安全、健康和环境,2018,18(11):17-20.
LI Y H. Domino effect of accidents and safety design of tank farms[J]. Safety Health & Environment, 2018, 18(11): 17-20.
13 戴希明.储罐内爆破坏形式预测与弱顶优化方法研究[D].大庆:东北石油大学,2019:66-73.
DAI X M. Study on prediction of damage form of blasting in storage tank and optimization method of weak roof[D]. Daqing: Northeast Petroleum University, 2019: 66-73.
14 DING Y, LU Y, CHEN Z. Study on the influence of frangible roof performance of tank explosion under multi-field coupling[J]. Journal of Failure Analysis and Prevention, 2019, 19(5): 1455-1463.
15 DING Y, ZHOU H, LU Y, et al. Design of foot bolts for weak roof storage tanks to avoid environmental pollution[J]. Ekoloji, 2019, 28(107): 3643-3651.
16 孙延廷.3000 m3立式固定顶储罐设计方法与罐顶失效分析[D].大庆:东北石油大学,2014:10-23.
SUN Y T. The analysis and design methods of 3000 m3 vertical dome tanks and analysis of roof failure[D]. Daqing: Northeast Petroleum University, 2014: 10-23.
17 侯海量,朱锡,李伟,等.舱内爆炸冲击载荷特性实验研究[J].船舶力学,2010,14(8):901-907. doi:10.3969/j.issn.1007-7294.2010.08.011
HOU H L, ZHU X, LI W, et al. Experimental studies on characteristics of blast loading when exploded inside ship cabin[J]. Journal of Ship Mechanics, 2010, 14(8): 901-907.
doi: 10.3969/j.issn.1007-7294.2010.08.011
18 LU Y, XU K. Prediction of debris launch velocity of vented concrete structures under internal blast[J]. International Journal of Impact Engineering, 2007, 34(11): 1753-1767.
19 CHAN P C, KLEIN H H. A study of blast effects inside an enclosure[J]. Journal of Fluids Engineering, 1994, 116(3): 450-455.
20 芦烨,丁宇奇,王学勇,等.考虑温压载荷耦合作用的储罐内爆破坏与辐射区域[J].化工机械,2021,48(6):839-846. doi:10.3969/j.issn.0254-6094.2021.06.010
LU Y, DING Y Q, WANG X Y, et al. Internal explosion damage and radiation area of storage tank considering coupling effect of temperature and pressure[J]. Chemical Engineering & Machinery, 2021, 48(6): 839-846.
doi: 10.3969/j.issn.0254-6094.2021.06.010
21 苗婷,苗张木,冷晓畅.基于内聚力模型的X65管线钢稳定裂纹扩展研究[J].船舶力学,2017,21(2):192-200. doi:10.3969/j.issn.1007-7294.2017.02.009
MIAO T, MIAO Z M, LENG X C. Study of stable crack growth through X65QO pipeline steel using cohesive zone modeling[J]. Journal of Ship Mechanics, 2017, 21(2): 192-200.
doi: 10.3969/j.issn.1007-7294.2017.02.009
22 傅伟庆,张文伟,孙正国,等. 立式圆筒形钢制焊接油罐设计规范: [S].北京:中国计划出版社,2014:17-145.
FU W Q, ZHANG W W, SUN Z G, et al. Code for design of vertical cylindrical welded steel oil tanks: [S]. Beijing: China Planning Press, 2014: 17-145.
23 ZHANG R, JIA J, WANG H, et al. Shock response analysis of a large LNG storage tank under blast loads[J]. KSCE Journal of Civil Engineering, 2018, 22(9): 3419-3429.
24 王晓辉,褚学森,冯光.基于ABAQUS显式CEL方法的球体入水数值研究[J].船舶力学,2018,22(7):838-844. doi:10.3969/j.issn.1007-7294.2018.07.007
WANG X H, CHU X S, FENG G. Numerical simulation of sphere’s water-entry based on coupled Eulerian-Lagrangian method[J]. Journal of Ship Mechanics, 2018, 22(7): 838-844.
doi: 10.3969/j.issn.1007-7294.2018.07.007
25 RASAEE S, MIRZAEI A H. Constitutive modeling of 2024 aluminum alloy based on the Johnson-Cook model[J]. Transactions of the Indian Institute of Metals, 2019, 72(4): 1023-1030.
26 XU H, ZHAO B, LU X, et al. A modified Johnson-Cook constitutive model for the compressive flow behaviors of the SnSbCu alloy at high strain rates[J]. Journal of Materials Engineering and Performance, 2019, 28(11): 6958-6968.
27 王博,刘雄飞,胡佳,等.缝内暂堵转向压裂数值模拟方法[J].石油科学通报,2021,6(2):262-271. doi:10.3969/j.issn.2096-1693.2021.02.020
WANG B, LIU X F, HU J, et al. Numerical simulation of in-fracture temporary plugging and diverting fracturing (ITPDF) [J]. Petroleum Science Bulletin, 2021, 6(2): 262-271.
doi: 10.3969/j.issn.2096-1693.2021.02.020
[1] 张佳,周兆明,练章华,李锴,陈智. 乏燃料水池覆面板对接焊缝裂纹检测研究[J]. 工程设计学报, 2023, 30(3): 372-379.
[2] 李成兵, 雷鹏. 5 000 m3立式拱顶储罐应力分析与弱顶性能评价[J]. 工程设计学报, 2020, 27(2): 182-190.
[3] 何育民, 程婉莹, 朱宝慧, 徐欢欢. 矩形梁裂纹柔度测量方法研究[J]. 工程设计学报, 2017, 24(6): 618-623.
[4] 任远, 张成成, 高靖云, 李孟光. 涡轮盘篦齿裂纹扩展的有限元数值模拟[J]. 工程设计学报, 2016, 23(2): 152-159,165.
[5] 李富贵, 龙伟, 罗亮, 詹从来. 预测模糊控制在液化天然气调峰系统的应用[J]. 工程设计学报, 2016, 23(1): 95-100.
[6] 李雪鹏,王艾伦. 频繁启停过程中拉杆微裂纹引起的组合转子性能退化研究[J]. 工程设计学报, 2015, 22(2): 129-136.
[7] 李雪鹏, 王艾伦. 拉杆疲劳裂纹导致的组合转子性能退化研究[J]. 工程设计学报, 2014, 21(4): 382-388.
[8] 王倩倩, 张义民, 吕昊. 基于可靠性的裂纹齿轮点蚀寿命参数灵敏度评估[J]. 工程设计学报, 2013, 20(4): 282-286.
[9] 张艳林, 张义民, 张艳芳, 金雅娟. 非正态参数圆孔间裂纹扩展寿命的可靠性分析[J]. 工程设计学报, 2010, 17(6): 415-419.
[10] 赵晋芳, 谢里阳, 刘建中, 李 兵. 有限板共线多孔MSD疲劳裂纹扩展有限元模拟[J]. 工程设计学报, 2009, 16(4): 256-260.
[11] 金雅娟, 张义民, 张艳林, 王新刚. 任意分布参数的涡轮盘裂纹扩展寿命可靠性分析[J]. 工程设计学报, 2009, 16(3): 196-199.
[12] 赵 阳, 范 博. 变壁厚浮顶型钢储罐在实测不均匀沉降下的稳定性分析[J]. 工程设计学报, 2008, 15(6): 472-476.
[13] 张瑞华,陈国华,颜伟文,陈清光. 基于MATLAB技术的LPG储罐重大事故动态模拟评价系统开发与应用[J]. 工程设计学报, 2007, 14(3): 220-225.
[14] 何家胜,朱光强,朱晓明,路远明,吴建平. 弯扭组合载荷下圆管半椭圆表面裂纹应力强度因子的有限元分析[J]. 工程设计学报, 2007, 14(2): 153-159.
[15] 吴宁祥, 吴克勤, 由美雁, 谢里阳. 裂纹梁的动态特性仿真[J]. 工程设计学报, 2006, 13(4): 236-240.