Please wait a minute...
工程设计学报  2020, Vol. 27 Issue (2): 182-190    DOI: 10.3785/j.issn.1006-754X.2020.00.032
保质设计     
5 000 m3立式拱顶储罐应力分析与弱顶性能评价
李成兵1,2, 雷鹏1
1.西南石油大学 机电工程学院, 四川 成都 610500;
2.西南石油大学 石油天然气装备教育部重点实验室, 四川 成都 610500
Stress analysis and weak roof performance evaluation for 5 000 m3vertical dome storage tank
LI Cheng-bing1,2, LEI Peng1
1.School of Mechatronic Engineering, Southwest Petroleum University, Chengdu 610500, China;
2.Key Laboratory of Petroleum and Natural Gas Equipment, Ministry of Education,Southwest Petroleum University, Chengdu 610500, China
 全文: PDF(1460 KB)   HTML
摘要: 根据国内外相关设计标准与规范,石油天然气等易燃易爆气体的储罐必须设计成弱顶结构,以最大限度地降低因内部超压而发生事故的危害程度。为了得到合适的弱顶结构设计方法,以常见的5 000 m3立式拱顶储罐为对象展开分析。首先,根据GB 50341—2014《立式圆筒形钢制焊接油罐设计规范》,对储罐结构参数进行设计并对其弱顶性能进行初步评价;然后,利用有限元分析方法对储罐结构进行分析,获得储罐在空罐、半罐、满罐工况下的提离高度、提离半径、最大等效应力和薄膜应力等关键参数,并在此基础上对储罐强度、稳定性、破坏形式和弱顶性能进行综合评价;最后,分析了顶壁连接焊角高度、罐顶曲率半径、边缘板厚度和罐体高径比等关键参数对储罐弱顶性能的影响。结果表明:基于GB 50341—2014设计的5 000 m3立式拱顶储罐并不具备弱顶性能,顶壁连接焊角高度减小到3.75 mm,或罐顶曲率半径增大到3.0DD为储罐直径),或边缘板厚度增大到15 mm,或罐体高径比增大到2.0都能使该储罐满足弱顶结构的设计要求。研究结果可为储罐弱顶结构的改进提供参考。
关键词: 立式拱顶储罐弱顶性能有限元分析应力分析破坏形式    
Abstract: In order to minimize the extent of injury caused by internal overpressure, storage tanks for flammable and explosive substances such as oil and natural gas must be designed as weak roof structures according to the relevant design standards and specifications at home and abroad. The common 5 000 m3 vertical dome storage tank was analyzed to obtain a suitable design method of weak roof structure. Firstly, the structural parameters of the storage tank were designed and its weak roof performance was preliminarily evaluated by the GB 50341—2014 Code for the Design of Vertical Cylindrical Steel Welded Oil Tanks. Secondly, the structure of the storage tank was analyzed by the finite element method to obtain the key parameters such as lifting height, lifting radius, maximum equivalent stress and film stress under the conditions of empty, half and full tank. The strength, structural stability, failure mode and weak roof performance of the storage tank were evaluated on these key parameters. Finally, it was conducted to analyze the influence of key parameters such as the roof-wall connection weld angle height, the tank roof curvature radius, the boundary plate thickness and the tank height-diameter ratio on the weak roof performance. The results showed that the 5 000 m3 vertical dome storage tank designed by the GB 50341—2014 did not meet the weak roof performance. However, some methods which could enable the tank to meet the weak roof structure were proposed: the roof-wall connection weld angle height was increased to 3.75 mm, the tank roof curvature radius was increased to 3.0D (D was the tank diameter), the boundary plate thickness was increased to 15 mm, or the tank height-diameter ratio was increased to 2.0. The research results can provide a reference for improving the weak roof structure of the storage tank.
Key words: vertical dome storage tank    weak roof performance    finite element analysis    stress analysis    failure mode
收稿日期: 2019-06-18 出版日期: 2020-04-28
:  TQ 053.2  
基金资助: 国家重点研发计划资助项目(2017YFC0806602)
作者简介: 李成兵(1977—),男,四川仁寿人,副教授,博士,从事力学和爆炸安全研究,E-mail:1376500806@qq.com,https://orcid.org/0000-0001-5693-9613
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李成兵
雷鹏

引用本文:

李成兵, 雷鹏. 5 000 m3立式拱顶储罐应力分析与弱顶性能评价[J]. 工程设计学报, 2020, 27(2): 182-190.

LI Cheng-bing, LEI Peng. Stress analysis and weak roof performance evaluation for 5 000 m3vertical dome storage tank. Chinese Journal of Engineering Design, 2020, 27(2): 182-190.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2020.00.032        https://www.zjujournals.com/gcsjxb/CN/Y2020/V27/I2/182

[1] 黄文霞,黄大炜,王永勇. 渣油拱顶罐拱顶失稳的有限元分析[J]. 化工机械,2007,34(4):193-196. doi: 10.3969/j. issn.0254-6094.2007.04.004 HUANGWen-xia, HUANGDa-wei, WANGYong-yong. Finite element analysis of the vault destabilization of a residuum oil tank[J]. Chemical Engineering and Machinery, 2007, 34(4): 193-196.
[2] MORGENEGGE. New design rules for frangible roof tanks[J]. Hydrocarbon Rocessing, 1978, 57 (8): 11-14.
[3] PRAGERM. Investigation of frangibility of geodesic dome roofs used in aboveground storage tanks[J]. Welding Research Council Progress Reports, 2005, 60(3): 3-37.
[4] WUT Y, LIUG R. Comparison of design methods of a tank-bottom annular plate and correct ring-wall[J]. International Journal of Pressure Vessels and Piping, 2000, 77(9): 511-517.doi:10.1016/S0308-0161(00)00055-7
[5] 孙正国. 储油罐顶对壳的弱连接结构[J]. 油气储运, 1991,10(1):1-5. SUNZheng-guo. Weakly connecting structure between roof and shell of oil storage tank[J]. Oil and Gas Storage and Transportation, 1991, 10(1): 1-5.
[6] 郑力翀. 大型钢储罐爆炸动力响应及热屈曲数值模拟[D]. 杭州:浙江大学建筑工程学院,2015:1-9. ZHENGLI-chong. Numerical simulation for explosion dynamic responses and thermal buckling of large steel tanks[D]. Hangzhou: Zhejiang University, College of Civil Engineering and Architecture, 2015: 1-9.
[7] 刘巨保,许蕴博. 基于GB 50341标准设计的立式拱顶储罐弱顶结构分析与评价[J]. 化工机械,2011,38(4): 423-427. LIUJu-bao, XUYun-bo. Weak-roof structure analysis and evaluation of vertical dome tank based on GB 50341[J]. Chemical Engineering & Machinery, 2011, 38(4): 423-427.
[8] 刘巨保,胡衍明,丁宇奇,等. 2万m3立式锥顶储罐弱顶结构分析与评价[J]. 石油化工设备,2010,39(4):31-35.doi:10.3969/j.issn.1000-7466.2010.04.009 LIUJu-bao, HUYan-ming, DINGYu-qi, et al. Analysis and evaluation for weak-proof structure of 2×104 m3 vertical cone-roof oil tank[J]. Petro-chemical Equipment, 2010, 39(4): 31-35.
[9] 刘巨保,门建斌,丁宇奇,等. 2万m3立式网壳顶储罐破坏分析及弱顶性能评价[J].石油化工设备,2013,42(3):48-53. doi: 10.3969/j.issn.1000-7466.2013.03.012 LIUJu-bao, Jian-binMEN, DINGYu-qi, et al. Failure analysis and evaluation for weak roof performance of 2×104 m3 vertical latticed shell roof storage tank[J]. Petro-chemical Equipment, 2013, 42(3): 48-53.
[10] 刘明,费继增,田孝伟. 3 000 m3立式拱顶储罐弱顶结构有限元分析与评价[C]//第三届中国油气储运技术交流大会论文集,成都,2012-05-01. 2013-10-29)[2019-06-10]. http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=7926654
LIUMing, FEI Ji-zeng, TIAN Xiao-wei. Finite element analysis and evaluation of weak top structure of 3000 m3 vertical vault storage tank[C]//Proceeding of the 3th China Oil and Gas Storage and Transportation Technology Exchange Conference, Chengdu, 2012-05-01. 2013-10-29)[2019-06-10]. http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=7926654
[11] 丁宇奇,刘巨保,武铜柱,等. 基于三维模型的立式拱顶储罐应力分析与弱顶影响因素分析[J]. 压力容器,2011, 28(12):11-17. doi:10.3969/j.issn.1001-4837.2011.12.003 DINGYu-qi, LIUJu-bao, WUTong-zhu, et al. Stress analysis of vertical dome tank and influence factors analysis of weak roof based on three-dimensional model[J]. Pressure Vessel Technology, 2011, 28(12): 11-17.
[12] HUKe, ZHAOYang. Numerical simulation of internal gaseous explosion loading in large-scale cylindrical tanks with fixed roof[J]. Thin-Walled Structures, 2016, 105: 16-28. doi: 10.1016/j.tws.2016.03.026
[13] 邱水才,张玲艳,李云. 拱顶罐的弱顶结构失效分析[J]. 广州化工,2018,46(23):143-145. doi:10.3969/j.issn.1001-9677.2018.23.045 QIUShui-cai, ZHANGLing-yan, LIYun. Failure analysis of weak top structure for dome-roof tank[J]. Guangzhou Chemical Industry, 2018, 46(23): 143-145.
[14] 黄晓明. 浅谈大型储罐的“最后一道安全防线”——弱顶结构[J]. 劳动保护科学技术,1999(3):51-53. HUANGXiao-ming. Talking about the "last safety line" of large storage tanks—weak top structure[J]. Journal of Safety Science and Technology, 1999(3): 51-53.
[15] 尹晔昕,薛明德. 拱顶储罐承压圈型式与承载能力的关系[J]. 压力容器,2002,19(10):25-29. doi:10.3969/j.issn.1001-4837.2002.10.007 YINYe-xin, XUEMing-de. Relation between types of compression rings of fixed roof tanks and loading capability[J]. Pressure Vessel Technology, 2002, 19(10): 25-29.
[16] 王夫安,金维昂,孙正国,等.立式圆筒形钢制焊接油罐设计规范:GB 50341—2003[S]. 北京:中国计划出版社,2003:20-37. WANGFu-an, JINWei-ang, SUNZheng-guo, et al. Code for design of vertical cylindrical welded steel oil tanks: GB 50341—2003[S]. Beijing: China Planning Press, 2003: 20-37.
[17] 傅伟庆,张文伟,孙正国,等. 立式圆筒形钢制焊接油罐设计规范:GB 50341—2014[S]. 北京:中国计划出版社,2014:17-35. FUWei-qing, ZHANGWen-wei, SUNZheng-guo, et al. Code for design of vertical cylindrical welded steel oil tanks: GB 50341—2014[S]. Beijing: China Planning Press, 2014: 17-35.
[18] 邵祖光. 钢制压力容器——分析设计标准:JB 4732—1995[S].北京:中国标准出版社,2005:12-19. SHAOZu-guang. Steel pressure vessels—design by analysis: JB 4732—1995[S]. Beijing: Standards Press of China, 2005: 12-19.
[19] POYNTZAve. Study to establish relations for the relative strength of API 650 cone roof roof-to-shell and shell-to-bottom joints:API PUBLICATION 937-A[S]. Manhattan: American Petroleum Institute, 2005: 51-54.
[1] 陈洪月, 张站立, 吕掌权. 线性压缩机圆柱臂盘簧的设计及性能研究[J]. 工程设计学报, 2021, 28(4): 504-510.
[2] 王成军, 李帅. 三关节式软体驱动器的设计及其弯曲性能分析[J]. 工程设计学报, 2021, 28(2): 227-234.
[3] 周超, 秦瑞江, 芮晓明. 风载荷作用下V形绝缘子串的力学特性分析[J]. 工程设计学报, 2021, 28(1): 95-104.
[4] 黄伟, 徐建, 陆新征, 胡明祎, 廖文杰. 动力装备和建筑楼盖的动力吸振研究[J]. 工程设计学报, 2021, 28(1): 25-32.
[5] 周超, 王阳, 芮晓明. 500 kV输电线路跳线风偏有限元分析与试验研究[J]. 工程设计学报, 2020, 27(6): 713-719.
[6] 刘召, 由宏新, 孙亮, 杨玉玲, 刘华清. 大型球罐悬吊式液压传动回转检测平台设计[J]. 工程设计学报, 2019, 26(3): 267-273.
[7] 宋建虎. 某高轨星载数传天线的振动分析[J]. 工程设计学报, 2019, 26(3): 274-279.
[8] 高志来, 邱自学, 任东, 崔德友, 徐新朋. 桥式龙门铣床横梁结构设计与优化[J]. 工程设计学报, 2019, 26(1): 56-64.
[9] 骆燕燕, 武雄伟, 田亚超, 于长潮. 冲击环境下电连接器接触性能研究[J]. 工程设计学报, 2018, 25(1): 110-117.
[10] 张强, 吴泽光, 吴泽洋, 王海舰. 采煤机导向滑靴力学在线测试与分析[J]. 工程设计学报, 2017, 24(6): 694-701,716.
[11] 程明, 陈照波, KIM Kyongsol, 焦映厚. 多级蜿蜒磁路式磁流变阻尼器的设计与分析[J]. 工程设计学报, 2017, 24(3): 350-358.
[12] 刘凡, 秦娜, 牛健地, 郑亮. 旋转超声磨削钛合金有限元仿真与试验研究[J]. 工程设计学报, 2017, 24(2): 162-167.
[13] 骆燕燕, 杨静宇, 刘昕伟, 李晓宁. 电连接器接触件应力场的数值分析与试验验证[J]. 工程设计学报, 2016, 23(6): 564-570.
[14] 刘凯, 曹毅, 周睿, 丁锐, 葛姝翌. 抗压内LET柔性铰链的建模及分析[J]. 工程设计学报, 2016, 23(6): 585-591.
[15] 赵宏强, 周茂贤, 陈庆, 傅斯龙. 潜孔钻机单支腿支撑平台受力分析[J]. 工程设计学报, 2016, 23(4): 345-351,363.