Please wait a minute...
工程设计学报  2017, Vol. 24 Issue (3): 350-358    DOI: 10.3785/j.issn.1006-754X.2017.03.016
通用零部件设计     
多级蜿蜒磁路式磁流变阻尼器的设计与分析
程明1, 陈照波1, KIM Kyongsol1,2, 焦映厚1
1. 哈尔滨工业大学 机电工程学院, 黑龙江 哈尔滨 150001;
2. 金策工业综合大学 机械工程系, 平壤 朝鲜 999093
Design and analysis of MR damper with multistage serpentine magnetic circuit
CHENG Ming1, CHEN Zhao-bo1, KIM Kyongsol1,2, JIAO Ying-hou1
1. School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China;
2. Department of Mechanical Engineering, Kim Chaek University of Technology, Pyongyang 999093, Democratic People's Republic of Korea
 全文: PDF(2763 KB)   HTML
摘要:

为了改善磁流变阻尼器的阻尼特性,设计了一种多级蜿蜒磁路式磁流变阻尼器。该磁流变阻尼器通过导磁环和阻磁环的堆叠来引导磁感线的走向,迫使磁感线数次穿过磁流变阻尼器的节流通道,提高了节流通道的利用效率。建立了考虑磁流变液非线性流动特性的数学模型,并通过有限元方法进行了磁路分析,进而对所设计的磁流变阻尼器的特性进行预测。将所设计的磁流变阻尼器的阻尼特性与具有相同体积的传统磁流变阻尼器进行了比较,包括可控阻尼力、等效阻尼和动态范围。结果显示在正弦激励速度为0.125 m/s,并通入2.0 A电流的情形下,所设计的磁流变阻尼器的最大可控阻尼力为11 000 N,约为传统磁流变阻尼器的2.3倍。此外,所设计的磁流变阻尼器并没有使零场情形下的阻尼力增大。所设计的磁流变阻尼器具有优良的阻尼性能,适用于广泛的工程减振应用。

关键词: 磁流变阻尼器蜿蜒磁路有限元分析阻尼特性    
Abstract:

A magneto-rheological (MR) damper with multistage serpentine magnetic circuit is designed to improve damping performance. Magnetically conductive and non-conductive elements were stacked to weave the magnetic flux path, and it was forced to pass through the flow channel of MR damper several times, which could improve the efficiency of flow channel. The mathematical model of the designed MR damper considering the nonlinear flow effect of the MR fluid in the flow channel was established, and the finite element analysis (FEA) was utilized to predict the damping characteristics of the designed MR damper. The damping performance of the designed MR damper was also theoretically compared with that of a traditional MR damper with the same outer dimensions (radius, length) of piston by the performance matrix, such as the damping force, equivalent damping, and dynamic range. Results showed the designed MR damper could provide a large controllable damping force as high as 11 000 N under excitation velocity of 0.125 m/s for current of 2.0 A, which was about 2.3 times over that of traditional MR damper. What's more, the damping force of the designed MR damper was equal to that of traditional MR damper in no current case, for the structural form and dimensions of flow channel of the designed MR damper and the traditional MR damper were same. The designed MR damper has excellent damping performance and is suitable for a wide range of engineering applications of vibration suppression.

Key words: magneto-rheological damper    serpentine magnetic circuit    finite element analysis    damping performance
收稿日期: 2016-11-08 出版日期: 2017-06-28
CLC:  TH137.5  
基金资助:

国家自然科学基金资助项目(11372083)

作者简介: 程明(1990-),男,湖北武汉人,博士生,从事智能材料与振动控制研究,E-mail: whuttyx@163.com, http://orcid.org//0000-0003-4870-0762
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
程明
陈照波
KIM Kyongsol
焦映厚

引用本文:

程明, 陈照波, KIM Kyongsol, 焦映厚. 多级蜿蜒磁路式磁流变阻尼器的设计与分析[J]. 工程设计学报, 2017, 24(3): 350-358.

CHENG Ming, CHEN Zhao-bo, KIM Kyongsol, JIAO Ying-hou. Design and analysis of MR damper with multistage serpentine magnetic circuit[J]. Chinese Journal of Engineering Design, 2017, 24(3): 350-358.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2017.03.016        https://www.zjujournals.com/gcsjxb/CN/Y2017/V24/I3/350

[1] ZHU X C, JING X J, CHENG L. Magnetorheological fluid dampers: a review on structure design and analysis [J]. Journal of Intelligent Material Systems, 2012, 23(8): 839-873.
[2] 李忠献, 徐龙河.新型磁流变阻尼器及半主动控制设计理论 [M].北京: 科学出版社, 2012: 1-25. LI Zhong-xian, XU Long-he. Novel magneto-rheological dampers and semi-active control design theory [M]. Beijing: Science Press, 2012: 1-25.
[3] MUHAMMAD A, YAO X L, DENG Z C. Review of magnetorheological (MR) fluids and its applications in vibration control [J]. Journal of Marine Science and Application, 2006, 5(3): 17-29.
[4] IMADUDDIN F, MAZLAN S A, ZAMZURI H. A design and modelling review of rotary magnetorheological damper [J]. Materials and Design, 2013, 51: 575-591.
[5] WANG D H, LIAO W H. Magnetorheological fluid dampers: a review of parametric modelling [J]. Smart Materials and Structures, 2011, 20(2): 023001.
[6] SUNG K G, CHOI S B. Preformance comparison of MR damper with three differernt working modes: shear, flow and mixed mode [J]. International Journal of Modern Physics B, 2005, 19(7/8/9): 1556-1562.
[7] YAZID I I M, MAZLAN S A, KIKUCHI T, et al. Design of magnetorheological damper with a combination of shear and squeeze modes [J]. Materials and Design, 2014, 54: 87-95.
[8] ROBINSON R, HU W, WERELYN M. Linking porosity and tortuosity to the performance of a magneto-rheological damper employing a valve filled with porous media [J]. IEEE Transactions on Magnetics, 2010, 46(6): 2156-2159.
[9] KIM K, CHEN Z B, YU D, et al. Design and experiments of a novel magnetorheological damper featuring bifold flow mode [J]. Smart Materials and Structures, 2016, 25(7): 075004.
[10] BAI X X, WANG D H, FU H. Principle, modeling, and testing of an annular-radial-duct magnetorheological damper [J]. Sensors and Actuators A: Physical, 2013, 201: 302-309.
[11] 胡国良, 李海燕, 李卫华.径向流和圆环流磁流变阀压降性能分析与试验[J].农业机械学报, 2016, 47(4): 364-371, 405. HU Guo-liang, LI Hai-yan, LI Wei-hua. Comparison and experiment of pressure drop of radial and annular type magnetorheological valves [J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(4): 364-371, 405.
[12] 胡国良, 李海燕, 张海云.圆环流磁流变阀压降性能分析与试验[J].农业机械学报, 2016, 47(3): 381-388. HU Guo-liang, LI Hai-yan, ZHANG Hai-yun. Performance analysis and experimental tests of pressure drop of annular type magnetorheological valve [J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(3): 381-388.
[13] 胡国良, 钟芳, 张海云, 等.两级径向流蜿蜒式磁流变阀结构设计及动态性能分析[J].农业机械学报, 2016, 47(10). HU Guo-liang, ZHONG Fang, ZHANG Hai-yun, et al. Structure design and dynamic performance analysis of a two-stage radial type magnetorheological valve with meandering fluid flow paths [J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(3): 381-388.
[14] 张进秋, 彭志召, 张建, 等.叶片式磁流变液减振器结构设计与优化[J]. 振动、测试与诊断, 2013, 33(1): 132-137. ZHANG Jing-qiu, PENG Zhi-zhao, ZHANG Jian, et al. Design and optimization of vane magneto-rheological fluid damper [J]. Journal of Vibration, Measurement & Diagnosis, 2013, 33(1): 132-137.
[15] BAI X X, HU W, WERELEY N M. Magnetorheological damper utilizing an inner bypass for ground vehicle suspensions [J]. IEEE Transactions on Magnetics, 2013, 49(7): 3422-3425.
[16] SENKAL D, GUROCAK H. Compact MR-brake with serpentine flux path for haptics applications [C]//Proceeding Third Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. Salt Lake City, Mar. 18-20, 2009.
[17] NGUYEN Q H, CHOI S B, WERELEY N M. Optimal design of magneto-rheological valves via a finite element method considering control energy and a time constant [J]. Smart Materials and Structures, 2008, 17(2): 025024.
[18] NGUYEN Q H, CHOI S B, WERELEY N M. Optimal design of magneto-rheological valves via a finite element method considering control energy and a time constant [J]. Smart Materials and Structures, 2008, 17(2): 025024.
[19] 邬思敏, 孟文俊, 李淑君. 双线圈旁置式新型磁流变制动器的设计与优化[J].工程设计学报, 2016, 23(5): 453-459. WU Si-min, MENG Wen-jun, LI Shu-jun, et al. Design and optimization of a novel magnetorheological brake with double coils placed on the side housing[J].Chinese Journal of Engineering Design, 2016, 23(5): 453-459.
[1] 谢超,陈云壮,石光楠,赖磊捷. 正交簧片型大行程柔性球铰设计及柔度分析[J]. 工程设计学报, 2023, 30(5): 626-633.
[2] 张涛,王开松,唐威,秦可成,刘阳,石雨豪,邹俊. 电流体泵驱动的柔性弯曲执行器的设计及分析[J]. 工程设计学报, 2023, 30(4): 467-475.
[3] 李琴,闫瑞,黄志强,李刚. 电驱可控震源驱动电机匹配设计与优化研究[J]. 工程设计学报, 2023, 30(2): 172-181.
[4] 李三平,孙腾佳,袁龙强,吴立国. 气动软体采摘机械手设计及实验研究[J]. 工程设计学报, 2022, 29(6): 684-694.
[5] 赵致勃,顾大强,李立新,张靖. 基于接触应力优化的摆线轮修形设计[J]. 工程设计学报, 2022, 29(6): 713-719.
[6] 张正峰,宋小雨,袁晓磊,陈文娟,张伟东. Al/CFRP混合薄壁结构耐撞性能可靠性优化设计[J]. 工程设计学报, 2022, 29(6): 720-730.
[7] 孙光明,王奕苗,万仟,弓堃,汪文津,赵坚. 考虑装配变形的精密机床床身优化设计[J]. 工程设计学报, 2022, 29(3): 318-326.
[8] 丰飞,傅雨晨,范伟,马举. 三角混合两级杠杆微位移放大机构的设计及性能分析[J]. 工程设计学报, 2022, 29(2): 161-167.
[9] 陈洪月, 张站立, 吕掌权. 线性压缩机圆柱臂盘簧的设计及性能研究[J]. 工程设计学报, 2021, 28(4): 504-510.
[10] 王成军, 李帅. 三关节式软体驱动器的设计及其弯曲性能分析[J]. 工程设计学报, 2021, 28(2): 227-234.
[11] 周超, 秦瑞江, 芮晓明. 风载荷作用下V形绝缘子串的力学特性分析[J]. 工程设计学报, 2021, 28(1): 95-104.
[12] 黄伟, 徐建, 陆新征, 胡明祎, 廖文杰. 动力装备和建筑楼盖的动力吸振研究[J]. 工程设计学报, 2021, 28(1): 25-32.
[13] 周超, 王阳, 芮晓明. 500 kV输电线路跳线风偏有限元分析与试验研究[J]. 工程设计学报, 2020, 27(6): 713-719.
[14] 李成兵, 雷鹏. 5 000 m3立式拱顶储罐应力分析与弱顶性能评价[J]. 工程设计学报, 2020, 27(2): 182-190.
[15] 刘召, 由宏新, 孙亮, 杨玉玲, 刘华清. 大型球罐悬吊式液压传动回转检测平台设计[J]. 工程设计学报, 2019, 26(3): 267-273.