Please wait a minute...
工程设计学报  2023, Vol. 30 Issue (2): 172-181    DOI: 10.3785/j.issn.1006-754X.2023.00.020
优化设计     
电驱可控震源驱动电机匹配设计与优化研究
李琴(),闫瑞,黄志强,李刚
西南石油大学 机电工程学院,四川 成都 610500
Research on matching design and optimization of drive motor of electric drive vibroseis
Qin LI(),Rui YAN,Zhiqiang HUANG,Gang LI
School of Mechatronics Engineering, Southwest Petroleum University, Chengdu 610500, China
 全文: PDF(4175 KB)   HTML
摘要:

电驱可控震源复杂的工况环境对驱动电机的性能提出了较高的要求。针对可控震源在行驶和激振工况下的动力需求,开展了驱动电机动力参数匹配设计,确定了驱动电机的主要设计参数;建立了驱动电机的二维有限元模型,采用子域法研究了电机在空载、额定工况下的磁通密度特性和谐波幅值,分析了电机磁通谐波畸变规律;开展了电机气隙长度优化设计以及电机转子结构的正交优化试验,得到了转子最优结构参数,并研制了电机样机。结果表明:在电机隔磁桥、永磁体与转子边缘之间区域的磁通密度波形畸变严重;永磁体与转子边缘之间区域的高次谐波对电机的影响较大,其3次谐波在基波中的占比高达83%;优化后电机效率可达96.8%。研究结果为电驱可控震源的优化提供了参考。

关键词: 电驱可控震源永磁同步电机参数匹配有限元分析优化    
Abstract:

The higher performance requirements for the drive motor are put forward because of the complex operating environment of the electric drive vibroseis. Aiming at the power requirements of the vibroseis under driving and excitation conditions, the matching design of the drive motor's power parameters was carried out, and the main design parameters of the drive motor were determined; a 2D finite element model of the drive motor was established, the magnetic flux density characteristics and harmonic amplitude of the motor under no-load and rated operating conditions were studied using the subdomain method, and the law of harmonic distortion of the motor's magnetic flux was analyzed; the optimal design of the air gap length of the motor and the orthogonal optimization test of the motor rotor structure were carried out, and the optimal structural parameters of the rotor were obtained. Therefore, a motor prototype was developed. The results showed that the magnetic flux density waveform in the motor magnetic isolation bridge and the region between the the permanent magnet and the rotor edge was severely distorted; the high-order harmonics in the region between the permanent magnet and the rotor edge had a significant impact on the motor, the proportion of the third harmonic in the fundamental wave was as high as 83%; the efficiency of the optimized motor reached 96.8%. The research results provide a reference for the optimization of electric drive vibroseis.

Key words: electric drive vibroseis    permanent magnet synchronous motor    parameter matching    finite element analysis    optimization
收稿日期: 2022-06-17 出版日期: 2023-05-06
CLC:  TE 91  
基金资助: 国家自然科学基金资助项目(41902326);四川省重点研发计划项目(22GJHZ0284);南充市-西南石油大学市校科技战略合作专项资金资助项目(SXHZ048)
作者简介: 李 琴(1970—),女,四川眉山人,副教授,硕士生导师,硕士,从事石油天然气装备智能化研究,E-mail: 3328732395@qq.com, http://orcid.org/0000-0003-2894-9026
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李琴
闫瑞
黄志强
李刚

引用本文:

李琴,闫瑞,黄志强,李刚. 电驱可控震源驱动电机匹配设计与优化研究[J]. 工程设计学报, 2023, 30(2): 172-181.

Qin LI,Rui YAN,Zhiqiang HUANG,Gang LI. Research on matching design and optimization of drive motor of electric drive vibroseis[J]. Chinese Journal of Engineering Design, 2023, 30(2): 172-181.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2023.00.020        https://www.zjujournals.com/gcsjxb/CN/Y2023/V30/I2/172

符号参数量值
m总质量14 000 kg
A迎风面积6.24 m2
α纵向坡度倾斜角26°
v最高车速18 km/h
CD空气阻力系数0.5
f滚动阻力系数0.06
表1  可控震源整车的基本参数
符号参数量值
G额定出力2 000 N
M质量5 905 kg
S行程0.203 m
表2  重锤的基本参数
符号参数量值
P额定功率350 kW
U额定电压380 V
I额定电流560 A
n额定转速1 500 r/min
T额定转矩1 700 N?m
η额定效率94%
表3  驱动电机的动力参数
参数量值参数量值
电机极数4极定子外径520 mm
定子槽数72槽转子内径110 mm
定子内径350 mm转子外径348.5 mm
表4  驱动电机的结构参数
图1  驱动电机的二维有限元模型
图2  驱动电机模型的网格划分及边界设置
图3  驱动电机的区域划分
图4  空载与额定工况下驱动电机各区域的磁通密度波形
图5  驱动电机各区域磁通密度谐波幅值
图6  驱动电机各区域高次谐波占比
图7  驱动电机磁通密度分布云图
图8  空载时气隙的径向磁通密度
图9  空载时气隙径向磁通密度谐波幅值
图10  空载时气隙径向磁通密度的基波和3次谐波随气隙长度的变化曲线
图11  空载时气隙的切向磁通密度
图12  空载时气隙切向磁通密度最大值随气隙长度的变化曲线
图13  电机效率随气隙长度的变化曲线
图14  驱动电机转子结构
方案编号Rib/mmO2/mmHRib/mm
1143411
2143512
3143613
4153412
5153513
6153611
7163413
8163511
9163612
表5  电机转子结构优化正交试验方案
图15  电机转子结构优化正交试验结果
图16  电机样机组件和电驱可控震源
图17  电机功率变化曲线
图18  电机功率和液压系统流量变化的归一化拟合曲线
图19  驱动电机效率随负载率的变化曲线
1 黄志强,李刚,丁雅萍,等. KZ-28型可控震源振动器平板性能有限元分析[J].机械科学与技术,2016,35(11):1673-1678. doi:10.13433/j.cnki.1003-8728.2016.1106
HUANG Z Q, LI G, DING Y P, et al. Finite element analysis for dynamic performances of KZ-28 vibroseis vibrator baseplate[J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(11): 1673-1678.
doi: 10.13433/j.cnki.1003-8728.2016.1106
2 胡浩.解读新的土方机械噪声和安全强制性国家标准[J].中国标准化,2012(11):97-100. doi:10.3969/j.issn.1002-5944.2012.11.034
HU H. Interpretation of earth-moving machinery-noise limits and safety compulsory national standards[J]. China Standardization, 2012(11): 97-100.
doi: 10.3969/j.issn.1002-5944.2012.11.034
3 李琴,张凯,黄志强,等.可控震源绿色动力可行性探索[J].物探装备,2017,27(5):297-301,324. doi:10.3969/j.issn.1671-0657.2017.05.005
LI Q, ZHANG K, HUANG Z Q, et al. Feasibility study on green power of vibrator[J]. Equipment for Geophysical Prospecting, 2017, 27(5): 297-301, 324.
doi: 10.3969/j.issn.1671-0657.2017.05.005
4 刘细平,刘章麒,李亚,等.电动汽车用双层永磁体IPMSM优化分析[J].电机与控制学报,2017,21(10): 30-39.
LIU X P, LIU Z Q, LI Y, et al. Optimization and analysis of IPMSM with double-layer permanent magnet used in electric vehicle[J]. Electric Machines and Control, 2017, 21 (10): 30-39.
5 董新伟,王一飞,杨磊.车用高性能永磁同步电机磁极设计综述[J].微电机,2019,52(11):97-100. doi:10.3969/j.issn.1001-6848.2019.11.020
DONG X W, WANG Y F, YANG L. A survey of magnetic pole design for high performance permanent magnet synchronous motors[J]. Micromotors, 2019, 52 (11): 97-100.
doi: 10.3969/j.issn.1001-6848.2019.11.020
6 赵艳娥,张建武.四轮驱动燃料电池汽车动力系统参数匹配与优化[J].汽车工程,2007(5):409-414,432. doi:10.3321/j.issn:1000-680X.2007.05.012
ZHAO Y, ZHANG J W. Parameter matching and optimization for the powertrain of a FWD fuel cell electric vehicle[J]. Automotive Engineering, 2007(5): 409-414, 432.
doi: 10.3321/j.issn:1000-680X.2007.05.012
7 刘灵芝,张炳力,汤仁礼.某型纯电动汽车动力系统参数匹配研究[J].合肥工业大学学报(自然科学版), 2007(5):591-593.
LIU L Z, ZHANG B L, TANG R L. Matching of powertrain parameters of a pure electric vehicle[J]. Journal of Hefei University of Technology (Natural Science), 2007 (5): 591-593.
8 姬芬竹,高峰.电动汽车驱动电机和传动系统的参数匹配[J].华南理工大学学报(自然科学版),2006(4):33-37. doi:10.3321/j.issn:1000-565X.2006.04.008
JI F Z, GAO F. Matching of motor and powertrain parameters of electric vehicle[J]. Journal of South China University of Technology (Natural Science Edition), 2006(4): 33-37.
doi: 10.3321/j.issn:1000-565X.2006.04.008
9 谢颖,黎志伟,郭金鹏.电动汽车用高功率密度感应电机的设计与研究[J].电机与控制学报,2020,24(2):46-54. doi:10.15938/j.emc.2020.02.006
XIE Y, LI Z W, GUO J P. Design and research on high power density induction motor in electric vehicle[J]. Electric Machines and Control, 2020, 24(2): 46-54.
doi: 10.15938/j.emc.2020.02.006
10 王群京,周建,钱喆,等.优化对称性降低V形内置式永磁电机齿槽转矩[J].电机与控制学报,2020, 24(11):55-62.
WANG Q J, ZHOU J, QIAN Z, et al. Optimizing symmetry to reduce the cogging torque of the V-type interior permanent magnet machines[J]. Electric Machines and Control, 2020, 24(11): 55-62.
11 王军年,刘健,初亮,等.电动汽车驱动电机结构参数优化设计[J].交通运输工程学报,2016,16(6):72-81. doi:10.3969/j.issn.1671-1637.2016.06.009
WANG J N, LIU J, CHU L, et al. Optimal design of driving motor structural parameters for electric vehicle[J]. Journal of Traffic and Transportation Engineering, 2016, 16(6): 72-81.
doi: 10.3969/j.issn.1671-1637.2016.06.009
12 邢泽智,王秀和,赵文良.基于不同极弧系数组合分段倾斜磁极的表贴式永磁同步电机齿槽转矩削弱措施研究[J].中国电机工程学报,2021,41(16):5737-5748.
XING Z Z, WANG X H, ZHAO W L. Research on reduction methods of cogging torque based on segmented skewing magnetic poles with different combinations of pole-arc coefficients in surface-mounted permanent magnet synchronous motors[J]. Proceedings of the CSEE, 2021, 41(16): 5737-5748.
13 王淑旺,朱标龙,田旭,等.车用电机定子铁芯损耗的分析与计算[J].合肥工业大学学报(自然科学版),2016, 39(10):1311-1315.
WANG S W, ZHU B L, TIAN X, et al. Analysis and calculation of stator core loss in vehicle motor[J]. Journal of Hefei University of Technology (Natural Science), 2016, 39(10): 1311-1315.
14 TAO D, ZHOU K L, LÜ F, et al. Magnetic field characteristics and stator core losses of high-speed permanent magnet synchronous motors[J]. Energies, 2020, 13(3): 535.
15 XU Y, AI M, XU Z, et al. Research on interior permanent magnet synchronous motor based on performance matching of electric bus[J]. IEEE Transactions on Applied Superconductivity, 2021, 31(8): 1-4.
16 ZHAO F, YU Z J, CAO J, et al. Design and optimization of a high-speed permanent magnet synchronous machine for gas compressors[J]. IEEE Transactions on Magnetics, 2022, 58(2): 1-5.
17 HU Y, ZHU S, LIU C, et al. Electromagnetic performance analysis of interior PM machines for electric vehicle applications[J]. IEEE Transactions on Energy Conversion, 2018, 33(1): 199-208.
18 胡明辉,谢红军,秦大同.电动汽车电机与传动系统参数匹配方法的研究[J].汽车工程,2013,35(12):1068-1073. doi:10.3969/j.issn.1000-680X.2013.12.004
HU M H, XIE H J, QIN D T. A study on the parameter matching between the motor and transmission system of an electric vehicle[J]. Automotive Engineering, 2013, 35(12): 1068-1073.
doi: 10.3969/j.issn.1000-680X.2013.12.004
19 SUN X, SHI Z, LEI G, et al. Analysis and design optimization of a permanent magnet synchronous motor for a campus patrol electric vehicle[J]. IEEE Transactions on Vehicular Technology, 2019, 68(11): 10535-10544.
20 陈振,李涛,薛晓伟,等.基于模糊综合评价法的可控震源振动器平板疲劳可靠性分析与优化[J].工程设计学报,2021,28(4):415-425. doi:10.3785/j.issn.1006-754X.2021.00.061
CHEN Z, LI T, XUE X W, et al. Fatigue reliability analysis and optimization of vibroseis vibrator baseplate based on fuzzy comprehensive evaluation method[J]. Chinese Journal of Engineering Design, 2021, 28(4): 415-425.
doi: 10.3785/j.issn.1006-754X.2021.00.061
21 王光德,王春强,曹文娟,等.可控震源低频振动和液压流量的关联浅析[J].物探装备,2021,31(3):182-184. doi:10.3969/j.issn.1671-0657.2021.03.013
WANG G D, WANG C Q, CAO W J, et al. An analysis of the correlation between low frequency vibration of vibrator and hydraulic flow[J]. Equipment for Geophysical Prospecting, 2021, 31(3): 182-184.
doi: 10.3969/j.issn.1671-0657.2021.03.013
22 张亚梅,王永芳,李燕兵,等.一种可控震源的驱动系统设计[J].物探装备,2022,32(1):13-16,20. doi:10.3969/j.issn.1671-0657.2022.01.004
ZHANG Y M, WANG Y F, LI Y B, et al. Drive system design for a kind of vibrator[J]. Equipment for Geophysical Prospecting, 2022, 32(1): 13-16, 20.
doi: 10.3969/j.issn.1671-0657.2022.01.004
23 卓亮,孙鲁,施道龙,等.考虑温度变化的高温高速永磁电机转子涡流损耗半解析模型及实验验证[J].中国电机工程学报,2021,41(24):8305-8315.
ZHUO L, SUN L, SHI D L, et al. Semi-analytical model and experimental verification of rotor eddy current loss of high temperature high speed permanent magnet machine considering temperature change[J]. Proceedings of the CSEE, 2021, 41(24): 8305-8315.
[1] 张小强,鲁碧为,刘家琴,吴玉程. 聚变堆偏滤器拓扑优化设计与稳态热分析[J]. 工程设计学报, 2023, 30(5): 601-607.
[2] 谢超,陈云壮,石光楠,赖磊捷. 正交簧片型大行程柔性球铰设计及柔度分析[J]. 工程设计学报, 2023, 30(5): 626-633.
[3] 王柏村,朱凯凌,鲍劲松,王峰,谢海波,杨华勇. 基于数字底座的涂装车身缓存区智能设计与调度优化[J]. 工程设计学报, 2023, 30(4): 399-408.
[4] 张涛,王开松,唐威,秦可成,刘阳,石雨豪,邹俊. 电流体泵驱动的柔性弯曲执行器的设计及分析[J]. 工程设计学报, 2023, 30(4): 467-475.
[5] 王金栋,谢宇鸿,陈燚,吴展扬. 基于河狸门齿的锤片式粉碎机锤片仿生设计[J]. 工程设计学报, 2023, 30(4): 476-484.
[6] 郭志敏,戴海曙,翟江,洪昊岑,王柏村,谢海波,杨华勇. 基于FMI的轴向柱塞泵分布式联合仿真与动态优化[J]. 工程设计学报, 2023, 30(4): 495-502.
[7] 窦方健,邱清盈,管成,邵锦杰,吴海峰. 大转动惯量缠绕机加减速曲线优化设计[J]. 工程设计学报, 2023, 30(4): 503-511.
[8] 何育民,韩莹,周晶. 基于改进果蝇优化算法的塔机自适应滑模控制研究[J]. 工程设计学报, 2023, 30(3): 271-280.
[9] 张栋,杨培,黄哲轩,孙凌宇,张明路. 爬壁机器人悬摆式磁吸附机构的设计与优化[J]. 工程设计学报, 2023, 30(3): 334-341.
[10] 郑小飞,黄镇海,马小龙,王建新,王斌锐. 基于SIMP方法的爬杆机器人结构优化与分析[J]. 工程设计学报, 2023, 30(3): 342-352.
[11] 戚其松,李成刚,董青,陈钰浩,徐航. 起重机生命周期载荷谱预测及基于疲劳寿命的结构优化设计[J]. 工程设计学报, 2023, 30(3): 380-389.
[12] 王世杰,王龙,马硕,杨杰,马聪,段国林. 直写成形制备FGMs零件时延迟信息的数字化预测方法[J]. 工程设计学报, 2023, 30(2): 127-135.
[13] 樊俊良,肖黎,罗月婷,陈刚,瞿小林,唐毅,龚恒翔. 雾化辅助CVD腔体的优化设计与实现[J]. 工程设计学报, 2023, 30(2): 182-188.
[14] 李三平,孙腾佳,袁龙强,吴立国. 气动软体采摘机械手设计及实验研究[J]. 工程设计学报, 2022, 29(6): 684-694.
[15] 张鹏程,牛建业,刘承磊,宋井科,王立鹏,张建军. 牵引式下肢康复机器人机构参数优化及轨迹规划[J]. 工程设计学报, 2022, 29(6): 695-704.