Please wait a minute...
工程设计学报  2023, Vol. 30 Issue (4): 495-502    DOI: 10.3785/j.issn.1006-754X.2023.00.058
机械优化设计     
基于FMI的轴向柱塞泵分布式联合仿真与动态优化
郭志敏1,4(),戴海曙2,3,翟江1,4,洪昊岑2,3,王柏村2,3(),谢海波2,3,杨华勇2,3
1.林德液压(中国)有限公司,山东 潍坊 261205
2.浙江大学 流体动力基础件与机电系统全国重点实验室,浙江 杭州 310058
3.浙江大学高端装备研究院,浙江 杭州 311106
4.潍柴动力股份有限公司,山东 潍坊 261205
Distributed co-simulation and dynamic optimization of axial piston pump based on FMI
Zhimin GUO1,4(),Haishu DAI2,3,Jiang ZHAI1,4,Haocen HONG2,3,Baicun WANG2,3(),Haibo XIE2,3,Huayong YANG2,3
1.Linde Hydraulic (China) Co. , Ltd. , Weifang 261205, China
2.State Key Laboratory of Fundamental Components of Fluid Power and Mechatronic systems, Zhejiang University, Hangzhou 310058, China
3.Institute of Advanced Machines, Zhejiang University, Hangzhou 311106, China
4.Weichai Power Co. , Ltd. , Weifang 261205, China
 全文: PDF(4508 KB)   HTML
摘要:

运用联合仿真的方法能够实时分析柱塞泵的运动学、动力学性能以及液压系统特性,其可广泛应用于柱塞泵产品的设计与优化。针对传统优化过程中分析与优化的离散化、效率低等不足,提出了一种基于功能模型接口(functional mock-up interface,FMI)的轴向柱塞泵分布式联合仿真方法,通过开发自动优化组件,实现对阻尼槽结构参数的迭代优化。首先,进行柱塞泵轴系运动学、动力学分析,建立其运动模型和受力模型,来确定轴系组件的约束关系;其次,搭建了柱塞泵联合仿真模型,研究了柱塞的运动、受力和变形特性;然后,基于云端服务器搭建了柱塞泵分布式联合仿真模型,通过FMI技术实现了各个仿真软件的同步调用;最后,基于云平台架构,开发了柱塞泵阻尼槽优化设计模板,实现了对阻尼槽最优结构参数的求解及其模型自动创建。仿真结果表明,阻尼槽结构优化后,柱塞泵出口流量脉动率降低了35.78%。所提出的方法能有效提高仿真与优化的效率,减轻研发人员的工作负担。

关键词: 轴向柱塞泵分布式建模混合建模动态优化    
Abstract:

The co-simulation method can be used to analyze the kinematics, dynamics performance and hydraulic system characteristics of piston pump in real time, which can be widely used in the design and optimization of piston pump products. A distributed co-simulation of axial piston pump based on functional mock-up interface (FMI) was proposed to address the shortcomings of high discretization of analysis and optimization and low efficiency in traditional optimization processes. By developing automatic optimization components, the iterative optimization of key structural parameters of damping groove was achieved. Firstly, kinematics and dynamics analysis was carried on the piston pump shaft system, and the motion model and force model of the piston pump shaft system were established to determine the constraint relationship of shaft system components; secondly, a co-simulation model of the piston pump was established to study the motion, force, and deformation characteristics of the piston pump; then, a distributed co-simulation model of the piston pump was built based on cloud server, and heterogeneous scheduling of each simulation software was achieved through FMI technology; finally, based on cloud platform architecture, an optimization calculation template for the damping groove of piston pump was developed, achieving the solution of the optimal structural parameters of the damping groove and its automatic model creation. The simulation results showed that after optimizing the damping groove structure, the outlet flow pulsation rate of the piston pump was reduced by 35.78%. The proposed method can effectively improve the efficiency of simulation and optimization, and reduce the workload of research and development personnel.

Key words: axial piston pump    distributed modeling    hybrid modeling    dynamic optimization
收稿日期: 2023-06-28 出版日期: 2023-09-04
CLC:  TP 137.51  
基金资助: 浙江省重点研发计划资助项目(2021C01018);国家自然科学基金资助项目(52205542)
通讯作者: 王柏村,杨华勇     E-mail: krdp_pump20@foxmail.com;baicunw@zju.edu.cn
作者简介: 郭志敏(1979—),男,山西襄汾人,高级工程师,博士,从事液压泵、阀及马达产品及其技术开发,静液压流体传动研究和动力机械开发等,E-mail: krdp_pump20@foxmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
郭志敏
戴海曙
翟江
洪昊岑
王柏村
谢海波
杨华勇

引用本文:

郭志敏,戴海曙,翟江,洪昊岑,王柏村,谢海波,杨华勇. 基于FMI的轴向柱塞泵分布式联合仿真与动态优化[J]. 工程设计学报, 2023, 30(4): 495-502.

Zhimin GUO,Haishu DAI,Jiang ZHAI,Haocen HONG,Baicun WANG,Haibo XIE,Huayong YANG. Distributed co-simulation and dynamic optimization of axial piston pump based on FMI[J]. Chinese Journal of Engineering Design, 2023, 30(4): 495-502.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2023.00.058        https://www.zjujournals.com/gcsjxb/CN/Y2023/V30/I4/495

图1  轴向柱塞泵柱塞运动原理示意
图2  柱塞位于外死点处时轴向柱塞泵受力分析
参数量值参数量值
柱塞直径22 mm分布圆半径45 mm
死区容积15 cm3柱塞角距40°
等效节流直径15 mm柱塞油膜间隙30 μm
配流油膜间隙20 μm柱塞偏心距0.015 mm
出/入口压力2 MPa滑靴油膜间隙30 μm
泵壳压力0.5 MPa节流系数0.76
油液密度875 kg/m3体积弹性模量1 100 MPa
表1  轴向柱塞泵主要结构参数
图3  轴向柱塞泵动力学模型
图4  轴向柱塞泵液压系统仿真模型
图5  轴向柱塞泵联合仿真分析模板组件
图6  柱塞质心位移和速度曲线
图7  柱塞和滑靴的变形云图
图8  单个柱塞腔的流量和压力曲线
图9  泵出口流量和压力曲线
图10  不同圆柱槽直径下泵出口流量曲线
图11  阻尼槽结构
图12  配流盘优化设计组件
图13  优化前后泵出口流量的对比
1 DEEKEN M. Simulation of the tribological contacts in an axial piston machine[C]//ASME International Mechanical Engineering Congress and Exposition, Anaheim, California, Nov. 13-19, 2004.
2 张斌. 轴向柱塞泵的虚拟样机及油膜压力特性研究[D]. 杭州:浙江大学,2009. doi:10.3901/cjme.2009.01.084
ZHANG B. Virtual prototype of axial piston pump and study of oil film pressure characteristics[D]. Hangzhou: Zhejiang University, 2009.
doi: 10.3901/cjme.2009.01.084
3 杨智炜,徐兵,张斌.基于虚拟样机技术的轴向柱塞泵特性仿真[J].液压气动与密封,2006(3):33-36. doi:10.3969/j.issn.1008-0813.2006.03.016
YANG Z W, XU B, ZHANG B. Simulation of axial piston pump characteristic based on virtual prototype technology[J]. Hydraulics Pneumatics & Seals, 2006(3): 33-36.
doi: 10.3969/j.issn.1008-0813.2006.03.016
4 何锐华. 基于ADAMS和AMESim的浮杯式轴向柱塞泵联合仿真研究[D]. 长春:吉林大学,2013.
HE R H. Co-simulation of floating cup axial piston pump based on ADAMS and AMESim[D]. Changchun: Jilin University, 2013.
5 梁海健. 斜盘式微小型定量轴向柱塞泵研究[D].哈尔滨:哈尔滨工业大学,2018.
LIANG H J. Research on swashplate micro-sized quantitative axial piston pump[D]. Harbin: Harbin Institute of Technology, 2018.
6 权凌霄,闫桂山,俞滨,等.斜轴式轴向柱塞泵伺服变量机构控制特性多学科协同仿真分析[J].液压与气动, 2014(9):58-65.
QUAN L X, YAN G S, YU B, et al. Multidisciplinary co-simulation analysis for variable servo mechanism of axial piston pump on control characteristic[J]. Chinese Hydraulics & Pneumatics, 2014(9): 58-65.
7 梁德栋,李毅波,潘阳,等.柱塞泵多目标优化设计及CFD仿真分析[J].计算力学学报, 2018, 35(3):350-355.
LIANG D D, LI Y B, PAN Y, et al. Multi-objective optimization design and CFD simulation analysis of piston pump[J]. Chinese Journal of Computational Mechanics, 2018, 35(3): 350-355.
8 杨馥霖.基于多体动力学轴向柱塞泵回程盘仿真研究与优化设计[D].兰州:兰州理工大学,2019.
YANG F L. Simulation research and optimization design of return plate of axial piston pump based on multi-body dynamics [D]. Lanzhou: Lanzhou University of Technology, 2019.
9 王晓晶,陈帅,张梦俭. 基于ADAMS和AMEsim的斜盘式轴向柱塞泵联合仿真[J].哈尔滨理工大学学报,2020,25(1):9-14.
WANG X J, CHEN S, ZHANG M J. Based on dynamics and hydraulic system coupling simulation of swash plate axial piston pump[J]. Journal of Harbin University of Science and Technology, 2020, 25(1): 9-14.
10 张斌,徐兵,杨华勇. 基于虚拟样机技术的数字式柱塞泵控制特性研究[J].浙江大学学报(工学版),2010,44(1):1-7. doi:10.3785/j.issn.1008-973X.2010.01.001
ZHANG B, XU B, YANG H Y. Study on control performance of digital piston pump based on virtual prototype technology[J]. Journal of Zhejiang University (Engineering Science), 2010, 44(1): 1-7.
doi: 10.3785/j.issn.1008-973X.2010.01.001
11 VACCA A, FRANZONI G. Hydrostatic pumps and motors[M]. New York: Wiley, 2021: 123-161.
12 HONG H C, ZHANG B, YU M,et al. Analysis and optimization on U-shaped damping groove for flow ripple reduction of fixed displacement axial-piston pump[J]. International Journal of Fluid Machinery and Systems, 2020, 13(1): 126-135.
13 HONG H C, ZHAO C X, ZHANG B,et al. Flow ripple reduction of axial-piston pump by structure optimizing of outlet triangular damping groove[J]. Processes, 2020, 8(12): 1664.
14 谢佑.基于FMI的联合仿真与参数优化[D].武汉:华中科技大学,2017.
XIE Y. Co-simulation and parameter optimization based on FMI [D]. Wuhan: Huazhong University of Science and Technology, 2017.
15 赵杨杨.基于FMI的一体化仿真平台及其在航天工程中的应用[D].哈尔滨:哈尔滨工业大学, 2013.
ZHAO Y Y. Integrated simulation platform based on functional mockup-interface and its application on aerospace engineering[D]. Harbin: Harbin Institute of Technology, 2013.
16 吕文军.基于FMI的多物理系统仿真研究与应用[J].智能制造,2019(8):39-40. doi:10.3969/j.issn.1671-8186.2019.08.016
LÜ W J. Research and application of multi-physical system simulation based on FMI[J]. Intelligent Manufacturing, 2019(8): 39-40.
doi: 10.3969/j.issn.1671-8186.2019.08.016
17 贾旭,李磊,王勇,等. 基于ADAMS柔性模型的轴向柱塞泵动力学仿真[J].液压气动与密封,2011, 31(6):22-24. doi:10.3969/j.issn.1008-0813.2011.06.008
JIA X, LI L, WANG Y, et al. Dynamic simulation of axial piston pump based on ADAMS flexible contact-impact[J]. Hydraulics Pneumatics & Seals, 2011, 31(6): 22-24.
doi: 10.3969/j.issn.1008-0813.2011.06.008
18 吴小锋,何亚峰,黄志荣,等.轴向柱塞泵多学科融合建模与集成优化[J].航空动力学报,2018,33(5):1245-1255. doi:10.13224/j.cnki.jasp.2018.05.027
WU X F, HE Y F, HUANG Z R, et al. Multidisciplinary modeling and integrated optimization of axial piston pump[J]. Journal of Aerospace Power, 2018, 33(5): 1245-1255.
doi: 10.13224/j.cnki.jasp.2018.05.027
[1] 宁志强,卫立新,权龙,赵美卿,高有山. 变排量非对称轴向柱塞泵抗扰控制及并行整定方法[J]. 工程设计学报, 2022, 29(4): 401-409.
[2] 邓海顺, 黄坤, 黄然, 王传礼, 邓月飞. 平衡式两排轴向柱塞泵斜盘力矩特性建模与分析[J]. 工程设计学报, 2016, 23(6): 592-599.
[3] 李晓豁, 史尚伟, 翁正洋, 钱亚森, 李岩, 杨梓嘉. 基于BP-GA的冲击破岩掘进机工作机构动态优化[J]. 工程设计学报, 2016, 23(4): 358-363.