Please wait a minute...
工程设计学报  2023, Vol. 30 Issue (4): 485-494    DOI: 10.3785/j.issn.1006-754X.2023.00.053
机械强度设计     
超深水打桩锤系统的可靠性分析与分配研究
李江昊1(),肖文生1,于文太2,王鸿雁3(),刘顺庆2,孙友福1
1.中国石油大学(华东) 海洋物探及勘探开发装备国家工程研究中心,山东 青岛 266555
2.海洋石油工程股份有限公司 安装事业部,天津 300450
3.青岛科技大学 机电工程学院,山东 青岛 266061
Reliability analysis and allocation research of ultra-deep water pile hammer system
Jianghao LI1(),Wensheng XIAO1,Wentai YU2,Hongyan WANG3(),Shunqing LIU2,Youfu SUN1
1.National Engineering Research Center for Marine Geophysical Prospecting and Exploration and Development Equipment, China University of Petroleum (East China), Qingdao 266555, China
2.Installation Division, Offshore Petroleum Engineering Co. , Ltd. , Tianjin 300450, China
3.School of Mechanical and Electrical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China
 全文: PDF(3572 KB)   HTML
摘要:

超深水打桩锤系统的性能直接影响大型海洋油气平台的建设进度。为深入研究超深水打桩锤系统的故障机理,对系统进行可靠性分析与分配研究。首先,对超深水打桩锤系统进行故障模式与影响分析(failure mode and effect analysis, FMEA),并基于FMEA结果提出了一种改进的危害性分析(criticality analysis, CA)方法。然后,运用改进的AGREE(advisory group on reliability of electronic equipment,电子设备可靠性咨询组)分配法及基于FMECA(failure mode, effect and criticality analysis,故障模式、影响与危害性分析)的可靠性分配方法,对超深水打桩锤系统的子系统和零部件依次进行可靠性分配研究。最后,在MATLAB App Designer开发环境下对超深水打桩锤系统的CA及可靠性分配过程进行可视化界面设计。结果表明,超深水打桩锤系统共有27种故障模式,钢桩等9个零部件为系统薄弱环节;经一、二次可靠性分配后,系统可靠度分别为0.999 063 22,0.999 063 27。超深水打桩锤系统的可靠性研究识别了系统的薄弱环节,为其国产化设计提供了一定的理论指导。

关键词: 超深水打桩锤系统故障模式、影响与危害性分析AGREE分配法可靠性分配可视化界面    
Abstract:

The performance of ultra-deep water pile hammer system directly affects the construction progress of large offshore oil and gas platforms. In order to conduct in-depth research on the failure mechanism of ultra-deep water pile hammer system, the reliability analysis and allocation research for the system was carried out. Firstly, the failure mode and effect analysis (FMEA) was conducted on the ultra-deep water pile hammer system, and an improved criticality analysis (CA) method was proposed based on the FMEA results. Then, using the improved AGREE (advisory group on reliability of electronic equipment) allocation method and reliability allocation method based on FMECA (failure mode, effect and criticality analysis), the reliability allocation research was carried out successively for subsystems and components of the ultra-deep water pile hammer system. Finally, the visual interface of the CA and reliability allocation process of ultra-deep water pile hammer system was designed in the MATLAB App Designer development environment. The results showed that there were a total of 27 failure modes in the ultra-deep water pile hammer system, and 9 components such as steel piles were weak links in the system; the system reliability after primary and secondary reliability allocation was 0.999 063 22 and 0.999 063 27, respectively. The reliability study of the ultra-deep water pile hammer system has identified the weak links of the system, which can provide certain theoretical guidance for its domestic design.

Key words: ultra-deep water pile hammer system    failure mode, effect and criticality analysis    AGREE allocation method    reliability allocation    visual interface
收稿日期: 2023-02-01 出版日期: 2023-09-04
CLC:  TH 114  
基金资助: 工业和信息化部高技术船舶科研项目(CH02N20)
通讯作者: 王鸿雁     E-mail: 375359564@qq.com;wanghy0546@163.com
作者简介: 李江昊(1997—),男,山东济南人,硕士生,从事超深水打桩锤系统可靠性研究,E-mail: 375359564@qq.com,https://orcid.org/0009-0007-6927-2177
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李江昊
肖文生
于文太
王鸿雁
刘顺庆
孙友福

引用本文:

李江昊,肖文生,于文太,王鸿雁,刘顺庆,孙友福. 超深水打桩锤系统的可靠性分析与分配研究[J]. 工程设计学报, 2023, 30(4): 485-494.

Jianghao LI,Wensheng XIAO,Wentai YU,Hongyan WANG,Shunqing LIU,Youfu SUN. Reliability analysis and allocation research of ultra-deep water pile hammer system[J]. Chinese Journal of Engineering Design, 2023, 30(4): 485-494.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2023.00.053        https://www.zjujournals.com/gcsjxb/CN/Y2023/V30/I4/485

图1  超深水打桩锤系统应用场景
故障模式故障代号故障模式故障代号
泄漏(液体)LK(LIQ)振动/噪声VIB/N
泄漏(气体)LEAK(G)控制/信号失效CTRL/SIG F
输出不稳定UO高温/声音异常HT/CAC
输入不稳定UI锈蚀C
磨损ABW性能改变CAPCHG
变形Dept.堵塞PLU
裂纹Crack杂质过多SI
松脱S摩擦FRICT
断裂FRF动作异常ABAC
疲劳失效FF线路异常ABLN
短路SC功能失效MPFF
断路OC不能满足工作需求FTF
打开/锁紧失效OPN/L F其他轻微故障OTHSLTFLT
综合因素/常见失效COMF
表1  超深水打桩锤系统常见故障模式
图2  超深水打桩锤系统故障模式统计结果
严酷度等级故障类型分级标准
1微小故障系统功能稍有退化,对人员、财产、生态环境不构成危害,完成作业后检修、维护即可
2临界故障系统功能退化或作业误差较大,对人员、财产、生态环境不构成危害
3较严重故障系统短时间内停机,对人员、财产、生态环境构成较大危害
4严重故障系统丧失部分功能且长时间停机,对人员、财产、生态环境构成严重危害
5灾难性故障系统丧失功能,甚至造成机毁人亡、巨额财产损失及不可恢复的海洋环境污染
表2  超深水打桩锤系统故障严酷度评价准则
零部件故障模式λp/10-6h-1αi /%sit/hCp
电液换向阀泄漏(液体)0.030.74343 8000.481 500 089
不能满足工作需求0.5814.293
打开/锁紧失效0.030.743
高/低输出3.3081.284
堵塞0.122.964
其他液压阀组异常磨损0.206.83343 8000.236 231 488
不能按需关闭0.144.783
不能满足工作需求2.2777.473
打开/锁紧失效0.103.412
堵塞0.227.513
液压缸油管变形0.164.36270 0800.201 032 214
拉缸1.1531.343
导向套锈蚀0.154.092
活塞杆不能动作0.174.633
缓冲装置故障0.8723.713
外泄漏1.1731.883
表3  超深水打桩锤系统零部件危害度分析结果(部分)
图3  超深水打桩锤子系统可靠性框图
子系统零部件数量/个复杂度危害度重要度
传统方法改进方法
合计30116.760 461 35
液压系统70.233 31.211 855 8010.268 894 85
气压系统50.166 70.141 661 4310.091 935 41
电控系统70.233 31.217 747 6810.269 547 73
机械系统60.200 013.635 796 1810.901 980 74
动力系统50.166 70.553 400 2610.181 709 11
表4  AGREE分配法的基本参数
子系统传统AGREE分配法改进AGREE分配法预计数据
可靠度失效率可靠度失效率可靠度失效率
液压系统0.999 953 330.000 046 670.999 826 440.000 173 560.999 981 400 20.000 018 599 8
气压系统0.999 966 660.000 033 340.999 637 400.000 362 600.999 994 990 00.000 005 010 0
电控系统0.999 953 330.000 046 670.999 826 860.000 173 140.999 974 890 30.000 025 109 7
机械系统0.999 960 000.000 040 000.999 955 650.000 044 350.999 922 752 80.000 077 247 2
动力系统0.999 966 660.000 033 340.999 816 540.000 183 460.999 977 290 20.000 022 709 8
表5  超深水打桩锤子系统可靠性分配结果
图4  基于不同AGREE分配法的超深水打桩锤子系统可靠度对比
子系统零部件危害度权重失效率可靠度
液压系统电液换向阀0.481 500 0890.397 324 5720.000 000 570.999 999 43
其他阀组0.236 231 4880.194 933 6610.000 001 160.999 998 84
液压缸0.201 032 2140.165 887 9000.000 001 360.999 998 64
液压泵0.274 127 5860.226 204 7890.000 001 000.999 999 00
液压油0.002 978 4000.002 457 7180.000 091 890.999 908 11
油箱0.010 730 0270.008 854 2110.000 025 510.999 974 49
蓄能器0.005 256 0000.004 337 1500.000 052 070.999 947 93
气压系统空压机0.077 528 4750.547 280 0690.000 004 630.999 995 37
空气过滤器0.004 077 6390.028 784 3990.000 087 950.999 912 05
油雾器0.002 340 4920.016 521 7310.000 153 230.999 846 77
油压缓冲器0.003 253 7140.022 968 2430.000 110 220.999 889 78
气动阀组0.054 461 1060.384 445 5580.000 006 580.999 993 42
电控系统变压器0.754 532 5220.619 613 1900.000 001 600.999 998 40
可编程逻辑控制器0.116 946 0000.096 034 6730.000 010 350.999 989 65
以太网交换机0.100 740 0000.082 726 4980.000 012 010.999 987 99
断路器0.031 536 0000.025 896 9910.000 038 370.999 961 63
继电器0.019 146 7020.015 723 0450.000 063 200.999 936 80
电磁先导阀0.030 044 0910.024 671 8520.000 040 270.999 959 73
各类传感器0.164 802 3600.135 333 7500.000 007 340.999 992 66

机械系统

锤头(锤芯)1.199 456 6330.088 258 6520.000 001 150.999 998 85
砧铁1.035 610 7760.076 202 5140.000 001 340.999 998 66
钢桩10.737 918 9150.790 119 6450.000 000 130.999 999 87
桩帽0.166 440 0000.012 247 0210.000 008 310.999 991 69
锤芯悬吊单元0.450 817 8580.033 172 1680.000 003 070.999 996 93
减震环0.045 552 0000.076 052 8060.000 030 360.999 969 64
动力系统深水电机0.109 965 5130.183 596 4580.000 021 230.999 978 77
压力补偿器0.030 222 0000.050 458 1120.000 077 240.999 922 76
绞车0.075 435 3400.125 945 4980.000 030 940.999 969 06
动态脐带缆0.050 840 5950.084 882 5500.000 045 910.999 954 09
发电机组0.286 936 8090.479 064 5760.000 008 140.999 991 86
表6  超深水打桩锤系统零部件可靠性分配结果
图5  超深水打桩锤系统的CA及可靠性分配可视化界面
1 毕宇.海上风电单桩施工液压锤减震环故障分析及改进措施[J].船舶工程,2021,43():87-89,100.
BI Y. Fault analysis and improvement measures of hydraulic hammer damping ring of offshore wind power single pile construction[J]. Ship Engineering, 2021, 43(): 87-89, 100.
2 GUO Y, HU J P, ZHANG L Y. Robust design of main control valve for hydraulic pile hammer flexible control system[J]. International Journal of Fluid Machinery and Systems, 2016, 9(1): 28-38.
3 LUO X F, HE H L, ZHANG X, et al. Failure mode analysis of intelligent ship positioning system considering correlations based on fixed-weight FMECA[J]. Processes, 2022, 10(12): 2677.
4 KADIR C. A knowledge based hierarchical reliability allocation (HIRAL) approach for shipboard systems[J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2022, 236(4): 1098-1111.
5 吴红秋,谢里阳,王艺,等.基于改进AGREE方法的静叶调节机构可靠性分配[J].机电工程,2023,40(3):399-406. doi:10.3969/j.issn.1001-4551.2023.03.011
WU H Q, XIE L Y, WANG Y, et al. Reliability distribution of adjusting mechanism of variable stator vanes based on improved AGREE method[J]. Journal of Mechanical & Electrical Engineering, 2023, 40(3): 399-406.
doi: 10.3969/j.issn.1001-4551.2023.03.011
6 杨超,狄鹏,陈童.基于区间分析的舰船装备可靠性模糊分配方法[J].工程设计学报,2015,22(4):317-323. doi:10.3785/j.issn.1006-754X.2015.04.003
YANG C, DI P, CHEN T. Fuzzy reliability allocation method for warship armaments based on interval analysis[J]. Chinese Journal of Engineering Design, 2015, 22(4): 317-323.
doi: 10.3785/j.issn.1006-754X.2015.04.003
7 陈斌,石磊,张大为,等.基于FMECA的水下多功能管汇可靠性分析[J].石油和化工设备,2023,26(1):16-18,21. doi:10.3969/j.issn.1674-8980.2023.01.004
CHEN B, SHI L, ZHANG D W, et al. Reliability analysis of subsea multi-function manifold based on FMECA[J]. Petro & Chemical Equipment, 2023, 26(1): 16-18, 21.
doi: 10.3969/j.issn.1674-8980.2023.01.004
8 肖龙林.卧螺离心机的可靠性研究[D].成都:电子科技大学,2011:23-25.
XIAO L L. Research on reliability of horizontal centrifuge[D]. Chengdu: University of Electronic Science and Technology of China, 2011: 23-25.
9 范晋伟,张理想,刘会普,等.基于FMECA与FTA的数控磨床数控系统可靠性分析[J].机床与液压,2022,50(10):188-191. doi:10.3969/j.issn.1001-3881.2022.10.034
FAN J W, ZHANG L X, LIU H P, et al. Reliability analysis for numerical control system of numerical control grinder based on FMECA and FTA[J]. Machine Tool & Hydraulics, 2022, 50(10): 188-191.
doi: 10.3969/j.issn.1001-3881.2022.10.034
10 OREDA Participants. Offshore reliability data handbook [M]. 6th ed. Trondheim: Det Norske Veritas, 2015:30-128.
11 PANYUKOV D I, KOZLOVSKII V N, AIDAROV D V, et al. Effectiveness of FMEA risk analysis[J]. Russian Engineering Research, 2022, 42(10): 1070-1072.
12 刘超.水下油气生产系统可靠性分析研究[D].青岛:中国石油大学(华东),2020:15-22.
LIU C. Research on reliability analysis of subsea oil and gas production system[D]. Qingdao: China University of Petroleum (East China), 2020: 15-22.
13 聂萌.数控机床主轴可靠性分析[D].吉林:东北电力大学,2019:39-40.
NIE M. Reliability analysis of CNC machine tool spindle [D]. Jilin: Northeast Electric Power University, 2019: 39-40.
14 肖文生,李江昊,于文太,等.基于Markov过程的超深水打桩锤系统可靠性研究[J].机电工程,2023,40(6):844-851. doi:10.3969/j.issn.1001-4551.2023.06.005
XIAO W S, LI J H, YU W T, et al. Reliability research of ultra-deep water pile hammer system based on Markov process[J]. Journal of Mechanical & Electrical Engineering, 2023, 40(6): 844-851.
doi: 10.3969/j.issn.1001-4551.2023.06.005
15 WANG Y B, JIA X S, ZHAO J M, et al. Improvement of AGREE allocation method[C]//8th International Conference on Reliability, Maintainability and Safety, Chengdu, Jul. 20-24, 2009.
16 栗京京,孟海军,张盟,等.高温质子交换膜燃料电池系统可靠性分析[J].电源技术,2023,47(5):595-600. doi:10.3969/j.issn.1002-087X.2023.05.008
LI J J, MENG H J, ZHANG M, et al. Reliability analysis of high temperature proton exchange membrane fuel cell system[J]. Chinese Journal of Power Sources, 2023, 47(5): 595-600.
doi: 10.3969/j.issn.1002-087X.2023.05.008
17 卢晓煜.飞行汽车对接系统的设计及可靠性评估[D].西安:长安大学,2021:43-55.
LU X Y. Design and reliability evaluation of flying vehicle docking system[D]. Xi’an: Chang’an University, 2021: 43-55.
18 李威伟.基于改进型AGREE法的车身控制系统可靠性分配[D].合肥:合肥工业大学,2014:14-15.
LI W W. The reliability allocation for centralized body control system based on correction AGREE method[D]. Hefei: Hefei University of Technology, 2014: 14-15.
19 谢群亚.基于故障树的数控伺服刀架可靠性分配方法研究[D].长春:吉林大学,2017:57-75.
XIE Q Y. Research on reliability allocation method of CNC servo turret based on fault tree analysis[D]. Changchun: Jilin University, 2017: 57-75.
20 李伟,赵建军,王超.基于MATLAB可视化界面的单缝衍射仿真分析[J].计算机应用与软件,2012,29(7):220-222,293. doi:10.3969/j.issn.1000-386X.2012.07.064
LI W, ZHAO J J, WANG C. Single-slit diffraction simulations and analysis based on MATLAB visual control interface[J]. Computer Applications and Software, 2012, 29(7): 220-222, 293.
doi: 10.3969/j.issn.1000-386X.2012.07.064
21 敖文刚,李勤,王歆.基于MATLAB的理论力学计算机辅助教学[J].力学与实践,2013,35(1):83-86. doi:10.6052/1000-0879-12-242
AO W G, LI Q, WANG X. Computer aided instruction of theoretical mechanics based on MATLAB[J]. Mechanics in Engineering, 2013, 35(1): 83-86.
doi: 10.6052/1000-0879-12-242
[1] 杨 超,狄 鹏,陈 童. 基于区间分析的舰船装备可靠性模糊分配方法[J]. 工程设计学报, 2015, 22(5): 317-323.
[2] 杨 超,狄 鹏,陈 童. 基于区间分析的舰船装备可靠性模糊分配方法[J]. 工程设计学报, 2015, 22(4): 317-323.