机械优化设计 |
|
|
|
|
基于FMI的轴向柱塞泵分布式联合仿真与动态优化 |
郭志敏1,4( ),戴海曙2,3,翟江1,4,洪昊岑2,3,王柏村2,3( ),谢海波2,3,杨华勇2,3 |
1.林德液压(中国)有限公司,山东 潍坊 261205 2.浙江大学 流体动力基础件与机电系统全国重点实验室,浙江 杭州 310058 3.浙江大学高端装备研究院,浙江 杭州 311106 4.潍柴动力股份有限公司,山东 潍坊 261205 |
|
Distributed co-simulation and dynamic optimization of axial piston pump based on FMI |
Zhimin GUO1,4( ),Haishu DAI2,3,Jiang ZHAI1,4,Haocen HONG2,3,Baicun WANG2,3( ),Haibo XIE2,3,Huayong YANG2,3 |
1.Linde Hydraulic (China) Co. , Ltd. , Weifang 261205, China 2.State Key Laboratory of Fundamental Components of Fluid Power and Mechatronic systems, Zhejiang University, Hangzhou 310058, China 3.Institute of Advanced Machines, Zhejiang University, Hangzhou 311106, China 4.Weichai Power Co. , Ltd. , Weifang 261205, China |
引用本文:
郭志敏,戴海曙,翟江,洪昊岑,王柏村,谢海波,杨华勇. 基于FMI的轴向柱塞泵分布式联合仿真与动态优化[J]. 工程设计学报, 2023, 30(4): 495-502.
Zhimin GUO,Haishu DAI,Jiang ZHAI,Haocen HONG,Baicun WANG,Haibo XIE,Huayong YANG. Distributed co-simulation and dynamic optimization of axial piston pump based on FMI[J]. Chinese Journal of Engineering Design, 2023, 30(4): 495-502.
链接本文:
https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2023.00.058
或
https://www.zjujournals.com/gcsjxb/CN/Y2023/V30/I4/495
|
1 |
DEEKEN M. Simulation of the tribological contacts in an axial piston machine[C]//ASME International Mechanical Engineering Congress and Exposition, Anaheim, California, Nov. 13-19, 2004.
|
2 |
张斌. 轴向柱塞泵的虚拟样机及油膜压力特性研究[D]. 杭州:浙江大学,2009. doi:10.3901/cjme.2009.01.084 ZHANG B. Virtual prototype of axial piston pump and study of oil film pressure characteristics[D]. Hangzhou: Zhejiang University, 2009.
doi: 10.3901/cjme.2009.01.084
|
3 |
杨智炜,徐兵,张斌.基于虚拟样机技术的轴向柱塞泵特性仿真[J].液压气动与密封,2006(3):33-36. doi:10.3969/j.issn.1008-0813.2006.03.016 YANG Z W, XU B, ZHANG B. Simulation of axial piston pump characteristic based on virtual prototype technology[J]. Hydraulics Pneumatics & Seals, 2006(3): 33-36.
doi: 10.3969/j.issn.1008-0813.2006.03.016
|
4 |
何锐华. 基于ADAMS和AMESim的浮杯式轴向柱塞泵联合仿真研究[D]. 长春:吉林大学,2013. HE R H. Co-simulation of floating cup axial piston pump based on ADAMS and AMESim[D]. Changchun: Jilin University, 2013.
|
5 |
梁海健. 斜盘式微小型定量轴向柱塞泵研究[D].哈尔滨:哈尔滨工业大学,2018. LIANG H J. Research on swashplate micro-sized quantitative axial piston pump[D]. Harbin: Harbin Institute of Technology, 2018.
|
6 |
权凌霄,闫桂山,俞滨,等.斜轴式轴向柱塞泵伺服变量机构控制特性多学科协同仿真分析[J].液压与气动, 2014(9):58-65. QUAN L X, YAN G S, YU B, et al. Multidisciplinary co-simulation analysis for variable servo mechanism of axial piston pump on control characteristic[J]. Chinese Hydraulics & Pneumatics, 2014(9): 58-65.
|
7 |
梁德栋,李毅波,潘阳,等.柱塞泵多目标优化设计及CFD仿真分析[J].计算力学学报, 2018, 35(3):350-355. LIANG D D, LI Y B, PAN Y, et al. Multi-objective optimization design and CFD simulation analysis of piston pump[J]. Chinese Journal of Computational Mechanics, 2018, 35(3): 350-355.
|
8 |
杨馥霖.基于多体动力学轴向柱塞泵回程盘仿真研究与优化设计[D].兰州:兰州理工大学,2019. YANG F L. Simulation research and optimization design of return plate of axial piston pump based on multi-body dynamics [D]. Lanzhou: Lanzhou University of Technology, 2019.
|
9 |
王晓晶,陈帅,张梦俭. 基于ADAMS和AMEsim的斜盘式轴向柱塞泵联合仿真[J].哈尔滨理工大学学报,2020,25(1):9-14. WANG X J, CHEN S, ZHANG M J. Based on dynamics and hydraulic system coupling simulation of swash plate axial piston pump[J]. Journal of Harbin University of Science and Technology, 2020, 25(1): 9-14.
|
10 |
张斌,徐兵,杨华勇. 基于虚拟样机技术的数字式柱塞泵控制特性研究[J].浙江大学学报(工学版),2010,44(1):1-7. doi:10.3785/j.issn.1008-973X.2010.01.001 ZHANG B, XU B, YANG H Y. Study on control performance of digital piston pump based on virtual prototype technology[J]. Journal of Zhejiang University (Engineering Science), 2010, 44(1): 1-7.
doi: 10.3785/j.issn.1008-973X.2010.01.001
|
11 |
VACCA A, FRANZONI G. Hydrostatic pumps and motors[M]. New York: Wiley, 2021: 123-161.
|
12 |
HONG H C, ZHANG B, YU M,et al. Analysis and optimization on U-shaped damping groove for flow ripple reduction of fixed displacement axial-piston pump[J]. International Journal of Fluid Machinery and Systems, 2020, 13(1): 126-135.
|
13 |
HONG H C, ZHAO C X, ZHANG B,et al. Flow ripple reduction of axial-piston pump by structure optimizing of outlet triangular damping groove[J]. Processes, 2020, 8(12): 1664.
|
14 |
谢佑.基于FMI的联合仿真与参数优化[D].武汉:华中科技大学,2017. XIE Y. Co-simulation and parameter optimization based on FMI [D]. Wuhan: Huazhong University of Science and Technology, 2017.
|
15 |
赵杨杨.基于FMI的一体化仿真平台及其在航天工程中的应用[D].哈尔滨:哈尔滨工业大学, 2013. ZHAO Y Y. Integrated simulation platform based on functional mockup-interface and its application on aerospace engineering[D]. Harbin: Harbin Institute of Technology, 2013.
|
16 |
吕文军.基于FMI的多物理系统仿真研究与应用[J].智能制造,2019(8):39-40. doi:10.3969/j.issn.1671-8186.2019.08.016 LÜ W J. Research and application of multi-physical system simulation based on FMI[J]. Intelligent Manufacturing, 2019(8): 39-40.
doi: 10.3969/j.issn.1671-8186.2019.08.016
|
17 |
贾旭,李磊,王勇,等. 基于ADAMS柔性模型的轴向柱塞泵动力学仿真[J].液压气动与密封,2011, 31(6):22-24. doi:10.3969/j.issn.1008-0813.2011.06.008 JIA X, LI L, WANG Y, et al. Dynamic simulation of axial piston pump based on ADAMS flexible contact-impact[J]. Hydraulics Pneumatics & Seals, 2011, 31(6): 22-24.
doi: 10.3969/j.issn.1008-0813.2011.06.008
|
18 |
吴小锋,何亚峰,黄志荣,等.轴向柱塞泵多学科融合建模与集成优化[J].航空动力学报,2018,33(5):1245-1255. doi:10.13224/j.cnki.jasp.2018.05.027 WU X F, HE Y F, HUANG Z R, et al. Multidisciplinary modeling and integrated optimization of axial piston pump[J]. Journal of Aerospace Power, 2018, 33(5): 1245-1255.
doi: 10.13224/j.cnki.jasp.2018.05.027
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|