Please wait a minute...
工程设计学报  2022, Vol. 29 Issue (4): 401-409    DOI: 10.3785/j.issn.1006-754X.2022.00.047
设计理论与方法     
变排量非对称轴向柱塞泵抗扰控制及并行整定方法
宁志强1,2(),卫立新1,权龙3,赵美卿2,高有山1()
1.太原科技大学 机械工程学院,山西 太原 030024
2.山西工程技术学院 机械电子工程系,山西 阳泉 045000
3.太原理工大学 机械与运载工程学院 山西 太原 030024
Anti-interference control and parallel tuning method for variable displacement asymmetric axial piston pump
Zhi-qiang NING1,2(),Li-xin WEI1,Long QUAN3,Mei-qing ZHAO2,You-shan GAO1()
1.College of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
2.Department of Mechanical and Electronic Engineering, Shanxi Institute of Technology, Yangquan 045000, China
3.College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, China
 全文: PDF(3570 KB)   HTML
摘要:

针对变排量非对称轴向柱塞泵因斜盘振荡严重而引起流量脉动较大的问题,提出将变量阻力矩视作干扰信号,采用抗扰控制算法来提高其变排量控制性能。通过SimulationX和Simulink平台联合仿真,对比在不同频率的变量阻力矩作用时常规PID(proportion integration differentiation,比例积分微分)控制、指数收敛干扰观测器控制、非线性PID控制、自抗扰控制和滑模控制下变排量非对称轴向柱塞泵斜盘角度的响应特性,以得到最合适的抗扰控制算法。在此基础上,提出一种基于粒子群优化(particle swarm optimization, PSO)的控制参数并行整定方法。仿真结果表明,在10,20和100 Hz干扰信号的作用下,滑模控制下变排量非对称轴向柱塞泵斜盘角度的波动量为常规PID控制下的1.7%,2.2%和23.0%,说明滑模控制算法能大幅减小斜盘振荡和流量脉动。基于PSO的控制参数并行整定方法有效地减小了滑模控制的跟踪误差,整定后的最大超调量减小了87.5%;且该并行整定方法可脱离专业仿真软件,与SimulationX平台仿真相比,其仿真效率提高了10倍以上。研究结果对常规液压控制系统的仿真优化有一定参考价值。

关键词: 变排量非对称轴向柱塞泵变量阻力矩抗扰控制粒子群优化并行整定    
Abstract:

Aiming at the problem of large flow pulsation caused by severe swash plate oscillation in variable displacement asymmetric axial piston pump, the variable resistance moment was regarded as the interference signal, and the anti-interference control algorithm was adopted to improve its variable displacement control performance. Under the action of variable resistance moments with different frequencies, the response characteristics of the swash plate angle of the variable displacement asymmetric axial piston pump under conventional PID (proportion integration differentiation) control, exponential convergence disturbance observer control, nonlinear PID control, active anti-interference control and sliding mode control were compared through the co-simulation of SimulationX and Simulink platforms, so as to obtain the most suitable anti-interference control algorithm. On this basis, a parallel tuning method of control parameters based on the particle swarm optimization (PSO) was proposed. The simulation results showed that, under the action of 10, 20 and 100 Hz interference signals, the swash plate angle fluctuation of the variable displacement asymmetric axial piston pump under the sliding mode control was 1.7%, 2.2% and 23.0% of that under the conventional PID control, which proved that the sliding mode control algorithm could greatly reduce the swash plate oscillation and flow pulsation. The parallel tuning method of control parameters based on the PSO effectively reduced the tracking error of sliding mode control, and the maximum overshoot was reduced by 87.5% after tuning; the parallel tuning method could be separated from the professional simulation software, and its simulation efficiency was improved by more than 10 times compared with SimulationX platform simulation. The research results have certain reference value for the simulation and optimization of conventional hydraulic control systems.

Key words: variable displacement asymmetric axial piston pump    variable resistance moment    anti-interference control    particle swarm optimization    parallel tuning
收稿日期: 2021-10-26 出版日期: 2022-09-05
CLC:  TH 137  
基金资助: 国家自然科学基金资助项目(51875381);山西省研究生创新项目(2021Y695)
通讯作者: 高有山     E-mail: aningzhiqiang@126.com;tkgaoyoushan@126.com
作者简介: 宁志强(1986—),男,山西太原人,讲师,博士,从事电液伺服系统控制研究,E-mail:aningzhiqiang@126.comhttps://orcid.org/0000-0003-2364-4768
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
宁志强
卫立新
权龙
赵美卿
高有山

引用本文:

宁志强,卫立新,权龙,赵美卿,高有山. 变排量非对称轴向柱塞泵抗扰控制及并行整定方法[J]. 工程设计学报, 2022, 29(4): 401-409.

Zhi-qiang NING,Li-xin WEI,Long QUAN,Mei-qing ZHAO,You-shan GAO. Anti-interference control and parallel tuning method for variable displacement asymmetric axial piston pump[J]. Chinese Journal of Engineering Design, 2022, 29(4): 401-409.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2022.00.047        https://www.zjujournals.com/gcsjxb/CN/Y2022/V29/I4/401

图1  变排量非对称轴向柱塞泵的结构示意
图2  变排量非对称轴向柱塞泵的控制原理
图3  变排量非对称轴向柱塞泵控制系统的闭环控制框图
图4  变排量非对称轴向柱塞泵实物
主要设备型号额定参数
角位移传感器CP-2UK-R260最大检测角度为±30°
比例伺服阀4WRPEH6C4B12L最大输出流量为12 L

流量压力

传感器

SCLV-PTQ-300

最大检测流量为

300 L/min

表1  变排量非对称轴向柱塞泵控制试验主要设备的型号和参数
图5  常规PID控制下斜盘的目标角度和响应角度对比
图6  变排量非对称轴向柱塞泵控制系统的仿真模型
图7  自抗扰控制器和非线性PID控制器
图8  不同干扰信号作用下采用不同抗扰控制算法时的斜盘角度响应曲线对比
控制算法主要控制参数斜盘角度波动量/(°)
10 Hz20 Hz100 Hz
常规PID控制P=2, I=0.9, D=0.011.7001.3000.080
非线性PID控制P1=0.75D1=1.50.7400.5300.226
指数收敛干扰观测器控制V=1 0000.8306.290不统计
自抗扰控制α1=6α2=11α3=60.1100.2690.311
滑模控制c=35,?η=50,?ω=0.0150.0300.0290.019
表2  不同干扰信号作用下采用不同抗扰控制算法时的斜盘角度波动量对比
图9  20 Hz干扰信号作用下采用不同抗扰控制算法时的B口流量对比
图10  滑模控制下斜盘角度的响应特性(无干扰)
图11  基于PSO的控制参数并行整定方法的整体框架
图12  滑模控制参数并行整定程序的人机交互界面
图13  基于PSO的滑模控制参数并行整定效果对比
1 权龙.泵控缸电液技术研究现状、存在问题及创新解决方案[J].机械工程学报,2008,44(11):87-92. doi:10.3901/JME.2008.11.087
QUAN Long. Current state, problems and the innovative solution of electro-hydraulic technology of pump controlled cylinder[J]. Journal of Mechanical Engineering, 2008, 44(11): 87-92.
doi: 10.3901/JME.2008.11.087
2 ZHANG Xiao-gang, QUAN Long, YANG Yang, et al. Output characteristics of a series three-port axial piston pump[J]. Chinese Journal of Mechanical Engineering, 2012, 25(3): 498-505. doi:10.3901/cjme.2012.03.498
doi: 10.3901/cjme.2012.03.498
3 张晓刚,权龙,杨阳,等.并联型三配流窗口轴向柱塞泵特性理论分析及试验研究[J].机械工程学报,2011,47(14):151-157. doi:10.3901/JME.2011.14.151
ZHANG Xiao-gang, QUAN Long, YANG Yang, et al. Theoretical analysis and experimental research on characteristics of parallel three assignment windows axial piston pump[J]. Journal of Mechanical Engineering, 2011, 47(14): 151-157.
doi: 10.3901/JME.2011.14.151
4 HUANG Jia-hai, ZHAO Hu, QUAN Long, et al. Development of an asymmetric axial piston pump for displacement-controlled system[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2014, 228(8): 1418-1430. doi:10.1177/0954406213508385
doi: 10.1177/0954406213508385
5 高有山,成杰,黄家海,等.变排量非对称轴向柱塞泵特性仿真分析及试验[J].机械工程学报,2018,54(14):215-224. doi:10.3901/JME.2018.14.215
GAO You-shan, CHENG Jie, HUANG Jia-hai, et al. Simulation analysis and test of variable-displacement asymmetric axial piston pump[J]. Journal of Mechanical Engineering, 2018, 54(14): 215-224.
doi: 10.3901/JME.2018.14.215
6 杨迦迪,赵斌,武兵,等.变排量非对称轴向柱塞泵控制性能分析[J].液压与气动,2021(2):42-49. doi:10.11832/j.issn.1000-4858.2021.02.007
YANG Jia-di, ZHAO Bin, WU Bing, et al. Analysis of control performance of variable displacement asymmetric axial piston pump[J]. Chinese Hydraulics & Pneumatics, 2021(2): 42-49.
doi: 10.11832/j.issn.1000-4858.2021.02.007
7 王慧,符鹏,王超,等.阀控变量泵系统动态特性及抗干扰特性分析[J].控制工程,2021,28(8):1588-1597. doi:10.14107/j.cnki.kzgc.20190461
WANG Hui, FU Peng, WANG Chao, et al. Analysis of dynamic characteristics and anti-interference characteristics of valve-controlled variable pump system[J]. Control Engineering of China, 2021, 28(8): 1588-1597.
doi: 10.14107/j.cnki.kzgc.20190461
8 吴斌,柏艳红,宋亦静,等.泵阀并联驱动液压缸抗干扰控制器设计[J].机床与液压,2021,49(12):158-161,165. doi:10.3969/j.issn.1001-3881.2021.12.032
WU Bin, BAI Yan-hong, SONG Yi-jing, et al. Design of anti-disturbance controller for the hydraulic cylinder driven by pump-valve in parallel[J]. Machine Tool & Hydraulics, 2021, 49(12): 158-161, 165.
doi: 10.3969/j.issn.1001-3881.2021.12.032
9 WANG Ai-hong, Zhen-feng LÜ, GAO You-shan, et al. Potential energy recovery scheme with variable displacement asymmetric axial piston pump[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2020, 234(8): 875-887. doi:10.1177/0959651819885208
doi: 10.1177/0959651819885208
10 黄家海,贺伟,郝惠敏,等.变排量非对称轴向柱塞泵控制特性分析[J].农业机械学报,2019,50(3):368-376. doi:10.6041/j.issn.1000-1298.2019.03.042
HUANG Jia-hai, HE Wei, HAO Hui-min, et al. Analysis of control characteristics of variable-displacement asymmetric axial piston pump[J]. Transactions of the Chinese Society of Agricultural Machinery, 2019, 50(3): 368-376.
doi: 10.6041/j.issn.1000-1298.2019.03.042
11 贺伟,黄家海,郝惠敏,等.变排量非对称轴向柱塞泵动态特性分析[J].液压与气动,2019(10):20-25. doi:10.11832/j.issn.1000-4858.2019.10.003
HE Wei, HUANG Jia-hai, HAO Hui-min, et al. Research on dynamic characteristics of variable-displacement asymmetric axial piston pump[J]. Chinese Hydraulics & Pneumatics, 2019(10): 20-25.
doi: 10.11832/j.issn.1000-4858.2019.10.003
12 刘金琨.滑模变结构控制MATLAB仿真[M].3版.北京:清华大学出版社,2015:56-57.
LIU Jin-kun. MATLAB simulation for sliding mode control[M]. 3rd ed. Beijing: Tsinghua University Press, 2015: 56-57.
13 韩京清.自抗扰控制器及其应用[J].控制与决策,1998,13(1):19-23. doi:10.3321/j.issn:1001-0920.1998.01.005
HAN Jing-qing. Auto-disturbances-rejection controller and its applications[J]. Control and Decision, 1998, 13(1): 19-23.
doi: 10.3321/j.issn:1001-0920.1998.01.005
14 武利强,林浩,韩京清.跟踪微分器滤波性能研究[J].系统仿真学报,2004,16(4):651-652,670. doi:10.3969/j.issn.1004-731X.2004.04.012
WU Li-qiang, LIN Hao, HAN Jing-qing. Study of tracking differentiator on filtering[J]. Journal of System Simulation, 2004, 16(4): 651-652, 670.
doi: 10.3969/j.issn.1004-731X.2004.04.012
15 刘金琨.先进PID控制MATLAB仿真[M].4版.北京:电子工业出版社,2016:72-90.
LIU Jin-kun. MATLAB simulation for advanced PID control[M]. 4th ed. Beijing: Publishing House of Electronics Industry, 2016: 72-90.
16 宁志强,卫立新,张瑞,等.基于多核CPU的复杂液压产品快速并行优化方法[J].农业机械学报,2022,53(4):441-449. doi:10.6041/j.issn.1000-1298.2022.04.046
NING Zhi-qiang, WEI Li-xin, ZHANG Rui, et al. Rapid parallel optimization method of complex hydraulic product based on multi-core CPU[J].Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(4): 441-449.
doi: 10.6041/j.issn.1000-1298.2022.04.046
17 KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of ICNN'95-International Conference on Neural Networks. New York: IEEE, 1995: 1942-1948. doi:10.1109/icnn.1995.488968
doi: 10.1109/icnn.1995.488968
18 曾建潮,介婧,崔志华.微粒群算法[M].北京:科学出版社,2004:35-40.
ZENG Jian-chao, Jing JIE, CUI Zhi-hua. Particle swarm optimization[M]. Beijing: Science Press, 2004: 35-40.
19 曾建潮,崔志华.一种保证全局收敛的PSO算法[J].计算机研究与发展,2004,41(8):1333-1338. doi:10.1007/978-3-540-25929-9_96
ZENG Jiao-chao, CUI Zhi-hua. A guaranteed global convergence particle swarm optimizer[J]. Journal of Computer Research and Development, 2004, 41(8): 1333-1338.
doi: 10.1007/978-3-540-25929-9_96
20 焦志全,杨雷,杨帼华,等.SimulationX二次开发及其在空气压缩系统中的应用[J].上海工程技术大学学报,2018,32(4):341-345. doi:10.3969/j.issn.1009-444X.2018.04.010
JIAO Zhi-quan, YANG Lei, YANG Guo-hua, et al. Secondary development of SimulationX and its application in air compression system[J]. Journal of Shanghai University of Engineering Science, 2018, 32(4): 341-345.
doi: 10.3969/j.issn.1009-444X.2018.04.010
[1] 梁栋, 梁正宇, 畅博彦, 齐杨, 徐振宇. 多臂机提综臂辅助旋铆并联机器人优化设计[J]. 工程设计学报, 2022, 29(1): 28-40.
[2] 肖圳, 何彦, 李育锋, 吴鹏程, 刘德高, 杜江. 改进MDSMOTEPSO-SVM在汽车组合仪表分类预测中的应用[J]. 工程设计学报, 2022, 29(1): 20-27.
[3] 黄伟, 徐建, 陆新征, 胡明祎, 廖文杰. 动力装备和建筑楼盖的动力吸振研究[J]. 工程设计学报, 2021, 28(1): 25-32.
[4] 孙月海, 唐二星. 弧齿锥齿轮基本参数优化设计[J]. 工程设计学报, 2020, 27(5): 616-624.
[5] 胡均平, 彭要明. 基于粒子群优化算法的螺旋钻机变幅机构铰点位置优化[J]. 工程设计学报, 2018, 25(5): 561-566,596.
[6] 韩丁, 丁俊. 基于TLESO/HLESO/RLESO的PMSM调速系统研究[J]. 工程设计学报, 2018, 25(1): 94-102.
[7] 梁松, 张义民, 胡鹏. 基于PMOPSO方法的H型铲齿凸轮优化设计[J]. 工程设计学报, 2017, 24(2): 232-240.
[8] 王文祝, 金丰, 周海波. 磁悬浮运动中电磁铁磁滞特性的非线性影响研究[J]. 工程设计学报, 2013, 20(3): 212-217.
[9] 钱学毅, 吴 双. 基于弹流润滑理论的非对称齿轮胶合强度多目标优化[J]. 工程设计学报, 2010, 17(6): 426-429.