Please wait a minute...
工程设计学报  2023, Vol. 30 Issue (3): 334-341    DOI: 10.3785/j.issn.1006-754X.2023.00.031
机器人与机构设计     
爬壁机器人悬摆式磁吸附机构的设计与优化
张栋(),杨培(),黄哲轩,孙凌宇,张明路
河北工业大学 机械工程学院,天津 300130
Design and optimization of pendulous magnetic adsorption mechanism for wall-climbing robots
Dong ZHANG(),Pei YANG(),Zhexuan HUANG,Lingyu SUN,Minglu ZHANG
School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China
 全文: PDF(4821 KB)   HTML
摘要:

为了解决爬壁机器人壁面适应能力差、运动灵活性低等问题,分析了现有爬壁机器人磁吸附机构存在的不足,并以轮式爬壁机器人为研究对象,根据爬壁机器人的功能要求,设计了一种壁面自适应悬摆式磁吸附机构。通过Ansoft软件对悬摆式磁吸附机构和传统磁吸附轮进行了对比分析。为了进一步减小磁吸附机构的质量,同时提高其吸附可靠性,基于高磁能利用率的目标,采用SNLP(sequential non-linear programming,连续非线性规划)算法对悬摆式磁吸附机构的结构参数进行优化,优化后磁吸附机构的吸附力增大了25.52%。研制了悬摆式磁吸附车轮样机,开展了吸附力测试实验和卸磁实验,并将其安装在爬壁机器人上,开展了运动性能测试实验,验证了磁吸附机构结构参数优化结果的合理性和结构设计的实用性。研究结果为提高爬壁机器人的工作性能提供了参考。

关键词: 爬壁机器人悬摆式磁吸附机构磁路仿真分析参数优化    
Abstract:

In order to solve the problems of poor wall adaptability and low movement flexibility of wall-climbing robots, the shortcomings of the existing magnetic adsorption mechanism of wall-climbing robots were analyzed. Taking a wheeled wall-climbing robot as research object, a wall adaptive pendulous magnetic adsorption mechanism was designed based on the functional requirements of wall-climbing robots. A comparative analysis was conducted between the pendulous magnetic adsorption mechanism and the traditional magnetic adsorption wheel by Ansoft software. In order to further reduce the mass of the magnetic adsorption mechanism and improve its adsorption reliability, based on the goal of high magnetic energy utilization, SNLP (sequential non-linear programming) algorithm was used to optimize the structural parameters of the pendulous magnetic adsorption mechanism. After optimization, the adsorption force of the magnetic adsorption mechanism was increased by 25.52%. A prototype of pendulous magnetic adsorption wheel was developed and the adsorption force testing experiment and demagnetization experiment were conducted. Motion performance testing experiment was carried after installing the pendulous magnetic adsorption wheel on a wall-climbing robot to verify the rationality of the optimization results of the structural parameters of the magnetic adsorption mechanism and the practicality of the structural design. The research results provide a reference for improving the working performance of wall-climbing robots.

Key words: wall-climbing robot    pendulous magnetic adsorption mechanism    magnetic circuit simulation analysis    parameter optimization
收稿日期: 2022-06-04 出版日期: 2023-07-06
CLC:  TP 242.2  
基金资助: 国家重点研发计划资助项目(2018YFB1309400);河北工业大学学科交叉方向研究生培养资助项目(HEBUT-Y-XKJC-2021119)
通讯作者: 杨培     E-mail: 2010078@hebut.edu.cn;yang_p1993@163.com
作者简介: 张 栋(1985—),男,河北黄骅人,讲师,硕士,从事智能机器人技术研究,E-mail: 2010078@hebut.edu.cn, http://orcid.org/0009-0006-6423-4545
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张栋
杨培
黄哲轩
孙凌宇
张明路

引用本文:

张栋,杨培,黄哲轩,孙凌宇,张明路. 爬壁机器人悬摆式磁吸附机构的设计与优化[J]. 工程设计学报, 2023, 30(3): 334-341.

Dong ZHANG,Pei YANG,Zhexuan HUANG,Lingyu SUN,Minglu ZHANG. Design and optimization of pendulous magnetic adsorption mechanism for wall-climbing robots[J]. Chinese Journal of Engineering Design, 2023, 30(3): 334-341.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2023.00.031        https://www.zjujournals.com/gcsjxb/CN/Y2023/V30/I3/334

图1  现有的磁吸附机构
图2  悬摆式磁吸附机构
图3  爬壁机器人整体结构
图4  爬壁机器人传动机构的结构
图5  悬摆式磁吸附机构的结构
图6  磁吸附机构的3D模型
图7  磁吸附机构的磁场分布
图8  磁吸附机构车轮径向磁场强度的变化
图9  爬壁机器人在竖直方向的受力
图10  悬摆式磁吸附机构结构参数示意
图11  悬摆式磁吸附机构的有限元模型
图12  悬摆式磁吸附机构结构参数的优化过程
优化前后r /mmα /(°)H/mmFm/NGg /Nλ
优化前25356104.162.15-0.39
优化后2039.645.03129.932.609.59
变量取整20405130.752.639.79
表1  优化前后悬摆式吸附机构的结构参数和性能参数
图13  悬摆式磁吸附机构吸附力测试实验现场
图14  悬摆式磁吸附机构卸磁操作示意
图15  爬壁机器人样机及运动性能测试场地
图16  爬壁机器人运动过程
1 程思敏, 陈韦宇, 丛培杰.爬壁机器人的研究现状[J].机电工程技术,2019,48(9):6-10. doi:10.3969/j.issn.1009-9492.2019.09.003
CHENG S M, CHEN W Y, CONG P J. Research status for wall-climbing robot[J]. Mechanical & Electrical Engineering Technology, 2019, 48(9): 6-10.
doi: 10.3969/j.issn.1009-9492.2019.09.003
2 TAVAKOLI M, VIEGAS C. Analysis and application of dual-row omnidirectional wheels for climbing robots[J]. Mechatronics, 2014, 24(5): 436-448.
3 EICH M, BONNIN-PASCUAL F, GARCIA-FIDALGO E, et al. A robot application for marine vessel inspection[J]. Journal of Field Robotics, 2014, 31(2): 319-341.
4 FAINA A, SOUTO D, DEIBE A, et al. Development of a climbing robot for grit blasting operations in shipyards[C]//2009 IEEE International Conference on Robotics and Automation. Kobe, Japan, 12-17 May, 2009. doi:10.1109/ROBOT.2009.5152584
doi: 10.1109/ROBOT.2009.5152584
5 LEE G, WU G, KIM J, et al. High-payload climbing and transitioning by compliant locomotion with magnetic adhesion[J]. Robotics and Autonomous Systems, 2012, 60(10): 1308-1316.
6 SONG Y K, LEE C M, KOO I M, et al. Development of wall climbing robotic system for inspection purpose[C]//2008 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2008: 1990-1995.
7 王吉岱,孔辉,陈广庆,等.新型罐壁检测爬行机器人的行走吸附机构设计[J].机械设计与制造,2013(1):26-28. doi:10.3969/j.issn.1001-3997.2013.01.010
WANG J D, KONG H, CHEN G Q, et al. The walk-adsorption mechanism design of a new tank-wall-climbing inspection robot[J]. Machinery Design & Manufacture, 2013(1): 26-28
doi: 10.3969/j.issn.1001-3997.2013.01.010
8 王洋,张小俊,张明路,等.可自适应变曲率立面的分体柔性爬壁机器人设计与分析[J].机械工程学报,2021, 57(3):49-58. doi:10.3901/jme.2021.03.049
WANG Y, ZHANG X J, ZHANG M L, et al. Design and analysis of split-flexible wall-climbing robot with adaptive variable curvature facade[J]. Journal of Mechanical Engineering, 2021, 57(3): 49-58.
doi: 10.3901/jme.2021.03.049
9 SHAO J, LI X F, ZONG C G, et al. A wall-climbing robot with gecko features[C]//International Conference on Mechatronics & Automation. Chengdu, China, 5-8. Aug., 2012.
10 GAO X S, SHAO J, DAI F Q, et al. Strong magnetic units for a wind power tower inspection and maintenance robot[J]. International Journal of Advanced Robotic Systems, 2012, 9(5):189. doi:10.5772/53780
doi: 10.5772/53780
11 GAO X S, SHAO J, DAI F Q, et al. A gecko-inspired robot for wind power tower inspection[J]. Applied Mechanics and Materials, 2014, 461: 831-837.
12 KALRA L P, GU J, MENG M. A wall climbing robot for oil tank inspection[C]//IEEE International Conference on Robotics and Biomimetics. Sanya, China, 15-18, Dec., 2007.
13 HU J Y, HAN X, TAO Y R, et al. A magnetic crawler wall-climbing robot with capacity of high payload on the convex surface[J]. Robotics and Autonomous Systems, 2022, 148: 103907.
14 陈勇,王昌明,包建东.新型爬壁机器人磁吸附单元优化设计[J].兵工学报,2012,33(12):1539-1544.
CHEN Y, WANG C M, BAO J D. Optimization of a novel magnetic adsorption unit for wall-climbing robot[J]. Acta Armamentarii, 2012, 33 (12): 1539-1544.
15 张小松.轮式悬磁吸附爬壁机器人研究[D].哈尔滨:哈尔滨工业大学,2012:12-28.
ZHANG X S. Research on wheeled suspended magnetic climbing wall robot[D]. Harbin: Harbin Institute of Technology, 2012: 12-28.
16 FERNÁNDEZ R, GONZÁLEZ E, FELIÚ V, et al. A wall climbing robot for tank inspection. an autonomous prototype[C]//36th Annual Conference on IEEE Industrial Electronics. Glendale, USA, 7-10, Nov., 2010.
17 潘柏松,张晋,魏凯,等.基于Halbach阵列爬壁机器人永磁轮吸附单元的设计与优化[J].浙江工业大学学报,2015,43(4):393-397. doi:10.3969/j.issn.1006-4303.2015.04.009
PAN B S, ZHANG J, WEI K, et al. The optimization of a novel permanent-magnetic wheel adsorption unit for wall-climbing robot based on Halbach array[J]. Journal of Zhejiang University of Technology, 2015, 43(4): 393-397.
doi: 10.3969/j.issn.1006-4303.2015.04.009
18 吴明晖.面向焊接任务的轮足式非接触磁吸附爬壁机器人研究[D].上海:上海交通大学,2014:27-52.
WU M H. Research on wheel foot type non-contact magnetic adsorption wall climbing robot for welding task[D]. Shanghai: Shanghai Jiaotong University, 2014: 27-52.
19 沈青青,张晋,李根.基于Halbach阵列爬壁机器人磁吸附单元的优化设计[J].轻工机械,2014,32(5):17-21. doi:10.3969/j.issn.1005-2895.2014.05.005
SHEN Q Q, ZHANG J, LI G. Optimized design of magnetic adsorption unit for wall-climbing robots based on halbach array[J]. Light Industry Machinery, 2014, 32(5): 17-21.
doi: 10.3969/j.issn.1005-2895.2014.05.005
20 WANG R, KAWAMURA Y. A magnetic climbing robot for steel bridge inspection[C]//Proceeding of the 11th World Congress on Intelligent Control and Automation. Shenyang, China, June 29-July 4, 2014.
21 成大先.机械设计手册(第三卷)[M]. 3版.北京:化学工业出版社,1993:11-50.
CHENG D X. Mechanical design manual (volume Ⅲ) [M]. 3th ed. Beijing: Chemical Industry Press, 1993: 11-50.
22 刘国强,赵凌云,蒋继娅. Ansoft工程电磁场有限元分析[M].北京:电子工业出版社,2005:3-62.
LIU G Q, ZHAO L Y, JIANG J Y. Ansoft engineering electromagnetic field finite element analysis[M]. Beijing: Publishing House of Electronics Industry, 2005: 3-62.
23 黄哲轩.石化储罐壁面检测爬壁机器人设计及其特性研究[D].天津:河北工业大学,2018:39-52.
HUANG Z X. Design and characteristic research of wall-climbing robot for petrochemical storage tank wall inspection[D]. Tianjin: Hebei University of Technology, 2018: 39-52.
[1] 张鹏程,牛建业,刘承磊,宋井科,王立鹏,张建军. 牵引式下肢康复机器人机构参数优化及轨迹规划[J]. 工程设计学报, 2022, 29(6): 695-704.
[2] 张文豪,班传文,李松梅. 基于离散元法的双组份复合涂料搅拌螺杆参数优化[J]. 工程设计学报, 2022, 29(5): 547-554.
[3] 钟道方, 田颖, 张明路. 轮腿式爬壁机器人的永磁吸附装置设计与优化[J]. 工程设计学报, 2022, 29(1): 41-50.
[4] 唐东林, 龙再勇, 汤炎锦, 潘峰, 游传坤. 储罐检测爬壁机器人全遍历路径规划[J]. 工程设计学报, 2020, 27(2): 162-171.
[5] 汤亮, 何仁杰, 龚发云, 李飞扬, 刘冠军, 杨敏. 变风载下风电齿轮箱内部激励规律研究及动态特性优化[J]. 工程设计学报, 2020, 27(2): 212-222.
[6] 刘春青, 王文汉. 基于人工神经网络-遗传算法的展成法球面精密磨削参数优化[J]. 工程设计学报, 2019, 26(4): 395-402.
[7] 唐东林, 李茂扬, 丁超, 魏子兵, 胡琳, 袁波. 轮式爬壁机器人转向稳定性研究[J]. 工程设计学报, 2019, 26(2): 153-161.
[8] 魏春雨, 蔡月, 刘明贺, 张琦, 贾乾忠. 新型车载医疗救护隔振平台设计及仿真[J]. 工程设计学报, 2018, 25(5): 532-538.
[9] 唐东林, 袁波, 胡琳, 李茂扬, 魏子兵. 储罐探伤爬壁机器人全遍历路径规划方法[J]. 工程设计学报, 2018, 25(3): 253-261.
[10] 李彦奎, 吕彦明, 倪明明. 基于正交试验的航空叶片精锻模具磨损分析[J]. 工程设计学报, 2017, 24(6): 632-637.
[11] 杨诗怡, 张峰峰, 范立成, 匡绍龙, 孙立宁. 放疗床多目标协调机构参数优化研究[J]. 工程设计学报, 2016, 23(3): 256-263.
[12] 李占福, 童昕. 基于AFSA-SimpleMKL对振动筛建模及筛机优化[J]. 工程设计学报, 2016, 23(2): 181-187.
[13] 毛 君,李 强,谢 苗,曹建南. 多目标优化软件开发及其应用[J]. 工程设计学报, 2015, 22(3): 262-268.
[14] 崔凯波, 秦俊奇, 狄长春, 张燕军. 基于ADAMS与CPSO算法的火炮结构参数优化设计研究[J]. 工程设计学报, 2012, 19(4): 278-282.
[15] 朱 波, 杨洪波, 张景旭, 张丽敏. 大口径望远镜三镜结构设计及优化[J]. 工程设计学报, 2010, 17(6): 469-472.