Please wait a minute...
工程设计学报  2020, Vol. 27 Issue (2): 212-222    DOI: 10.3785/j.issn.1006-754X.2020.00.028
优化设计     
变风载下风电齿轮箱内部激励规律研究及动态特性优化
汤亮1,2, 何仁杰1,2, 龚发云1,2, 李飞扬1,2, 刘冠军1,2, 杨敏1,2
1.湖北工业大学 机械工程学院, 湖北 武汉 430070;
2.湖北省制造业创新方法与应用工程技术研究中心, 湖北 武汉 430070
Internal excitation law research and dynamic characteristic optimization of wind turbine gearbox under varying wind load
TANG Liang1,2, HE Ren-jie1,2, GONG Fa-yun1,2, LI Fei-yang1,2, LIU Guan-jun1,2, YANG Min1,2
1.School of Mechanical Engineering, Hubei University of Technology, Wuhan 430070, China;
2.Hubei Engineering Research Center for Manufacturing Innovation Method, Wuhan 430070, China
 全文: PDF(2951 KB)   HTML
摘要: 风电齿轮箱作为风电机组的关键部件,其动态特性直接影响整个机组的运行。以某兆瓦级风电齿轮箱为研究对象,考虑箱体、行星架的结构柔性后,建立风电齿轮箱耦合动力学模型,并分析了其动态响应。针对单一工况所得的齿轮修形量未必适用于其它工况的问题,对各工况下的风电齿轮箱各级齿轮副内部激励进行了加权处理,以各齿轮内部激励和最小为优化目标,基于遗传算法寻求适用于多工况的最优修形量,并结合齿轮宏观参数优化来改善风电齿轮箱的动态响应。结果表明,通过宏观参数优化及齿轮修形后,各工况下风电齿轮箱的振动加速度及结构噪声均得到了有效改善。研究结果为兆瓦级风电齿轮箱动力学特性优化提供了依据。
关键词: 风电齿轮箱宏观参数优化齿轮修形振动噪声    
Abstract: The dynamic characteristics of wind turbine gearbox as a key component directly affect the operation of the whole wind turbine. A megawatt wind turbine gearbox was taken as the research object. After considering the structural flexibility of the box and planet carrier, the coupling dynamic model of wind turbine gearbox was established and its dynamic response was analyzed. In order to solve the problem that the gear modification amount obtained under single working condition might not be suitable for other working conditions, the internal excitation of gear pairs in wind turbine gearbox under each working condition was weighted. Taking the minimum internal excitation sum as the optimization target, the optimal modification amount for multiple working conditions was found based on genetic algorithm, and the dynamic response of the wind turbine gearbox was improved by combining the optimization of the macro-parameters of the gears. The results showed that the vibration acceleration and structural noise of wind turbine gearbox were effectively improved under all working conditions after macro-parameter optimization and gear modification. The research results provide a basis for improving the dynamics characteristics of megawatt wind turbine gearbox.
Key words: wind turbine gearbox    optimization of macro-parameter    gear modification    vibration    noise
收稿日期: 2019-04-26 出版日期: 2020-04-28
:  TH 132.4  
基金资助: 国家科技部创新方法工作专项资金资助项目(2016IM020200-03)
作者简介: 汤亮(1978—),男,湖北十堰人,副教授,硕士生导师,博士,从事机械设计及传动研究,E-mail:47793012@qq.com,https://orcid.org/0000-0002-2728-458X
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
汤亮
何仁杰
龚发云
李飞扬
刘冠军
杨敏

引用本文:

汤亮, 何仁杰, 龚发云, 李飞扬, 刘冠军, 杨敏. 变风载下风电齿轮箱内部激励规律研究及动态特性优化[J]. 工程设计学报, 2020, 27(2): 212-222.

TANG Liang, HE Ren-jie, GONG Fa-yun, LI Fei-yang, LIU Guan-jun, YANG Min. Internal excitation law research and dynamic characteristic optimization of wind turbine gearbox under varying wind load. Chinese Journal of Engineering Design, 2020, 27(2): 212-222.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2020.00.028        https://www.zjujournals.com/gcsjxb/CN/Y2020/V27/I2/212

[1] GUANY H, LIM F, LIM T C, et al. Comparative analysis of actuator concepts for active gear pair vibration control[J]. Journal of Sound and Vibration, 2004, 269(1/2): 273-294. doi:10.1016/s0022-460x(03)00072-5
[2] ZHAOM M, JIJ C. Nonlinear torsional vibrations of a wind turbine gearbox[J]. Applied Mathematical Modelling, 2015, 39(16): 4928-4950. doi: 10.1016/j.apm.2015.03.026
[3] CARBONELLIA, RIGAUDE, PtERRETLIAUDETJ. Vibro-acoustic analysis of geared systems-predicting and controlling the whining noise[M]. Berlin: Automotive NVH Technology, Springer International Publishing, 2016: 106-109. doi:10.1007/978-3-319-24055-8_5
[4] SWITONSKIE, MEZYKA. Selection of optimum dynamic features for mechatronic drive systems[J]. Automation in Construction, 2008, 17(3): 251-256. doi: 10.1016/j.autcon.2007.05.001
[5] 刘华朝,朱才朝,柏厚义,等. 轮齿修形对兆瓦级风电齿轮箱NVH性能的影响[J]. 振动与冲击, 2016,35(24):158-163. doi: 10.13465/j.cnki.jvs.2016. 24.026 LIUHua-zhao, ZHUCai-zhao, BAIHou-yi, et al. The effect of gear modification on the NVH characteristics of a megawatt level wind turbine gearbox[J]. Journal of Vibration and Shock, 2016, 35(24): 158-163.
[6] 方源,章桐,冷毅,等. 基于轮齿修形的电动车齿轮啸叫噪声品质研究[J].振动与冲击,2016, 35(9):123-128. doi: 10.13465/j.cnki.jvs.2016.09.019 FANGYuan, ZHANGTong, LENGYi, et al. Sound quality of electric vehicles’gear whine noise based on gear teeth modification[J]. Journal of Vibration and Shock, 2016, 35(9): 123-128.
[7] 张霖霖,朱如鹏,靳广虎,等. 内激励作用下的单对齿轮振动噪声分析[J]. 振动工程学报,2014, 27(6):915-919.doi:10.3969/j.issn.1004-4523.2014.06.016 ZHANGLin-lin, ZHURu-peng, JINGuang-hu, et al. Vibration and noise analysis of the single pair of gear under internal excitation[J]. Journal of Vibration Engineering, 2014, 27(6): 915-919.
[8] 陈思雨,唐进元,王志伟,等. 修形对齿轮系统动力学特性的影响规律[J]. 机械工程学报,2017, 50(13):59-65.doi:10.3901/JME.2014.13.059 CHENSi-yu, TANGJin-yuan, WANGZhi-wei, et al. Effect of modification on dynamic characteristics of gear transmissions system[J]. Journal of Mechanical Engineering, 2014, 50(13): 59-65.
[9] 秦大同,刑子坤,王建宏. 基于动力学和可靠性的风力发电齿轮传动系统参数优化设计[J]. 机械工程学报,2008,44(7):24-31. doi:10.3321/j.issn:0577-6686.2008.07.004 QINDa-tong, XINGZi-kun, WANGJian-hong. Optimization design of system parameters of the gear transmission of wind turbine based on dynamics and reliability[J]. Journal of Mechanical Engineering, 2008, 44(7): 24-31.
[10] 刘祖飞. 基于齿轮修形的变速器啸叫治理[D].长春:吉林大学机械科学与工程学院,2017:10-12. LIUZu-fei. Control of transmission whistle based on gear modification[D]. Changchun: Jilin University, College of Mechanical Science and Engineering, 2017: 10-12.
[11] 刘华朝. 兆瓦级风电齿轮箱NVH性能分析[D]. 重庆:重庆大学机械工程学院,2016:30-35. LIUHua-zhao. Analysis of NVH characteristics of megawatt level wind turbine gearbox[D]. Chongqing: Chongqing University, College of Mechanical Engineering, 2016: 30-35.
[12] 刘文,杨云,林腾蛟,等. 偏心误差影响下的斜齿轮摩擦激励计算方法[J]. 浙江大学学报(工学版),2017,51(8):1560-1567.doi:10.3785/j.issn.1008-973X.2017.08.011 LIUWen, YANGYun, LINTeng-jiao, et al. Method of calculating friction excitation of helical gear with geometric eccentricity[J]. Journal of Zhejiang University (Engineering Science), 2017, 51(8): 1560-1567.
[13] 李发家,朱如鹏,鲍和云,等. 高重合度与低重合度齿轮系统动力学分岔性对比分析[J]. 中南大学学报(自然科学版),2015,46(2):465-471. doi:10.11817/j.issn.1672-7207.2015.02.013 LIFa-jia, ZHURu-peng, BAOHe-yun, et al. Contrastive analysis of dynamic bifurcation characteristics between high contact ratio and low contact ratio gears system[J]. Journal of Central South University (Science and Technology), 2015, 46(2): 465-471.
[14] 潘晓东,刘祥环,黎超,等. 纯电动汽车高速齿轮传动NVH性能优化研究[J]. 重庆理工大学学报(自然科学版),2017,11(31):25-31. doi:10.3969/j.issn.1674-8425(z).2017.11.004 PANXiao-dong, LIUXiang-huan, LIChao, et al. Investigation on NVH performance optimization of BEV high speed gear transmission[J]. Journal of Chongqing University of Technology (Science and Technology), 2017, 11(31): 25-31.
[15] 耿坎. 提高重载齿轮传动的可靠性[M]. 北京:机械工业出版社,1986:236-239. GENGKan. Research on improving the reliability of heavy load gear trian[M]. Beijing: China Machine Press, 1986: 236-239.
[16] 魏兵,喻全余,孙未,等. 机械原理[M]. 武汉:华中科技大学出版社,2011:156-158. WEIBing, YUQuan-yu, SUNWei, et al. Mechanical principle[M]. WuHan: Huazhong University of Science & Technology Press, 2011: 156-158.
[17] BONORIG, BARBIERIM, PELLICANOF. Optimum profile modifications of spur gears by means of genetic algorithms[J]. Journal of Sound and Vibration, 2008, 313(3): 603-616. doi:10.1016/j.jsv.2007.12.013
[18] 李明. 风电增速箱斜齿轮齿向修形研究[D]. 大连:大连理工大学机械工程学院,2008:45-47. doi:10.7666/d.y1419026 LIMing. Research on longitudinal correction of helical gear in gearbox for wind turbine generator[D]. Dalian: Dalian University of Technology, College of Mechanical Engineering, 2008: 45-47.
[1] 陈振, 李涛, 薛晓伟, 周阳, 敬爽, 陈言. 基于模糊综合评价法的可控震源振动器平板疲劳可靠性分析与优化[J]. 工程设计学报, 2021, 28(4): 415-425.
[2] 李刚, 徐光明, 黄志强, 亓文, 郝磊. 扫描信号激振下振动器-大地耦合动刚度和动阻尼研究[J]. 工程设计学报, 2021, 28(4): 450-457.
[3] 魏建宝, 李松梅, 徐雨田. 三叉式-球笼式双联万向联轴器的扭转振动特性分析[J]. 工程设计学报, 2021, 28(4): 458-465.
[4] 刘舒沁, 刘若晨, 孙见忠, 张进武. 风电齿轮箱磨损状态静电在线监测方法研究[J]. 工程设计学报, 2021, 28(2): 163-169.
[5] 贾杜平, 莫丽, 毛良杰, 曾松. 深水隔水管-测试管柱系统涡激振动实验研究[J]. 工程设计学报, 2021, 28(2): 170-178.
[6] 莫丽, 贾杜平, 毛良杰, 王国荣. 不同气体产量下水平井完井管柱振动机理的试验研究[J]. 工程设计学报, 2020, 27(6): 690-697.
[7] 曾光, 边强, 赵春江, 殷玉枫, 冯毅杰. 变参数下角接触球轴承保持架的稳定性与振动特性分析[J]. 工程设计学报, 2020, 27(6): 735-743.
[8] 白杨溪, 陈洪月, 陈洪岩, 王鑫. 多约束条件下采煤机摇臂横向振动分析及试验验证[J]. 工程设计学报, 2020, 27(6): 707-712.
[9] 王川, 方海辉, 那枫, 金浩, 王安义, 刘静. 基于升沉补偿的钻柱-采油树纵向下放安装研究[J]. 工程设计学报, 2020, 27(4): 478-486.
[10] 张宪旭, 刘怡然, 李丽君. 基于Helmholtz共振腔阵列的声学超材料研究[J]. 工程设计学报, 2020, 27(4): 441-447.
[11] 陈振, 周阳, 敬爽, 黄志强, 陈言. 震源振动器平板损伤机理及其疲劳寿命预测研究[J]. 工程设计学报, 2019, 26(6): 658-665.
[12] 侯勇俊, 李芬, 吴先进, 刘有平. 负压钻井液振动筛气液喷射器性能的数值模拟研究[J]. 工程设计学报, 2019, 26(4): 423-432.
[13] 王哲, 陈勇, 曹展, 李光鑫, 左扣成. 纯电动汽车两挡变速器减振降噪研究[J]. 工程设计学报, 2019, 26(3): 280-286.
[14] 宋建虎. 某高轨星载数传天线的振动分析[J]. 工程设计学报, 2019, 26(3): 274-279.
[15] 倪洪启, 金驰, 冯霏. 波纹补偿器故障诊断系统研制[J]. 工程设计学报, 2019, 26(3): 354-363.