Please wait a minute...
工程设计学报  2019, Vol. 26 Issue (6): 658-665    DOI: 10.3785/j.issn.1006-754X.2019.00.013
保质设计     
震源振动器平板损伤机理及其疲劳寿命预测研究
陈振, 周阳, 敬爽, 黄志强, 陈言
西南石油大学 机电工程学院, 四川成都 610500
Study on damage mechanism and fatigue life prediction of seismic vibrator baseplate
CHEN Zhen, ZHOU Yang, JING Shuang, HUANG Zhi-qiang, CHEN Yan
School of Mechatronic Engineering, Southwest Petroleum University, Chengdu 610500, China
 全文: PDF(3392 KB)   HTML
摘要: 振动器是可控震源地震信号激发的关键装置,长期宽、高频地震波激发致使振动器平板焊接部位出现裂纹甚至疲劳失效,这不仅会大大减短平板工作寿命,而且严重影响震源信号质量。由此,对平板开裂断口的微观形貌进行分析,掌握平板疲劳损伤区域内损伤特征、裂纹扩展规律,揭示平板开裂断口损伤机理。针对平板疲劳损伤模式和特点,开展平板“三点弯曲”疲劳试验,拟合平板S—N曲线,预测平板疲劳寿命,并与采用断裂力学法的疲劳寿命计算结果进行比较。结果表明,经疲劳试验参数修正的S—N曲线法的精度高于断裂力学法,可准确预测震源振动器平板的工作寿命。研究成果为延长震源振动器平板的疲劳寿命、增强其可靠性提供了科学的理论支持,有助于提高我国油气勘探技术及相关工程装备的研发水平和国际竞争力。
关键词: 振动器平板损伤机理疲劳寿命疲劳试验分析    
Abstract: The vibrator is the key device for the excitation of the seismic signal of vibroseis. Long-term wide and high-frequency seismic wave excitation causes cracks or even fatigue failure in the welded part of the vibrator baseplate, which will not only greatly reduce the working life of the baseplate, but also seriously affect the source signal quality. Therefore, the micromorphology of the baseplate cracking fracture was analyzed. The damage characteristics and crack propagation law of the fatigue damage area of the baseplate were grasped, which revealed the damage mechanism of the baseplate cracking fracture. According to the fatigue damage mode and characteristics of the baseplate, the "three-point bending" fatigue test of the baseplate was carried out, and the S-N curve of the baseplate was fitted. The fatigue life of the baseplate was predicted, and compared with the fatigue life calculated by the fracture mechanics method. The results showed that the S-N curve method modified by fatigue test parameters was more accurate than the fracture mechanics method, and it could accurately predict the working life of the seismic vibrator baseplate. The research results provide scientific theoretical support for prolonging the fatigue life of seismic vibrator baseplate and enhancing its reliability, which will significantly enhance the research and development level and international competitiveness of China's oil and gas exploration technology as well as the related engineering equipment.
Key words: vibrator baseplate    damage mechanism    fatigue life    fatigue test analysis
收稿日期: 2019-03-26 出版日期: 2019-12-28
CLC:  TH 122  
基金资助: 国家自然科学基金青年基金资助项目(41802198)
作者简介: 陈振(1985—),男,湖北黄冈人,副教授,硕士生导师,博士,从事振动器关键部件疲劳行为分析等研究,E-mail:117976897@qq.com,https://orcid.org/0000-0002-3595-1645
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈振
周阳
敬爽
黄志强
陈言

引用本文:

陈振, 周阳, 敬爽, 黄志强, 陈言. 震源振动器平板损伤机理及其疲劳寿命预测研究[J]. 工程设计学报, 2019, 26(6): 658-665.

CHEN Zhen, ZHOU Yang, JING Shuang, HUANG Zhi-qiang, CHEN Yan. Study on damage mechanism and fatigue life prediction of seismic vibrator baseplate. Chinese Journal of Engineering Design, 2019, 26(6): 658-665.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2019.00.013        https://www.zjujournals.com/gcsjxb/CN/Y2019/V26/I6/658

[1] 陶知非.改善可控震源高频信号输出品质的探讨[J].物探装备,2008,18(2):71-77. doi: 10.3969/j.issn.1671-0657.2008.02.001 TAO Zhi-fei. Study on improving quality of high-frequency output signal in vibroseis[J]. Equipment for Geophysical, 2008, 18(2): 71-77.
[2] 刘金中,马铁荣.可控震源的发展状况[J].石油科技论坛,2008,27(5):38-42. doi: 10.3969/j.issn.1002-302X.2008.05.007 LIU Jin-zhong, MA Tie-rong. Development of the vibrosies[J]. Oil Forum, 2008, 27(5): 38-42.
[3] WEI Z, PHILIPS T F, HALL M A. Fundamental discussions on seismic vibrators[J]. Geophysics, 2010, 75(6): W13-W25. doi: 10.1190/1.3509162
[4] 周浩,殷凯,禹华军.用有限元的方法找出AHV-Ⅳ364震源平板应力集中位置[J].物探装备,2018,28(1):26-28. doi: 10.3969/j.issn.1671-0657.2018.01.007 ZHOU Hao, YIN Kai, YU Hua-jun. The way to find the stress concentration of AHV-Ⅳ 364 vibroseis with finite element[J]. Equipment for Geophysical Prospecting, 2018, 28 (1): 26-28.
[5] 黄志强,彭珣,李刚.可控震源振动器平板多频响应分析[J].工程设计学报,2017,24(6):648-654. doi: 10.3785/j.issn.1006-754X.2017.06.006 HUANG Zhi-qiang, PENG Xun, LI Gang. Analysis of multi-frequency response of vibroseis vibrator baseplate [J]. Chinese Journal of Engineering Design, 2017, 24(6): 648-654.
[6] 黄志强,丁雅萍,陶知非,等.国内外可控震源振动器平板研究现状与发展方向[J].石油矿场机械,2015,44(6):1-5. doi:10.3969/j.issn.1001-3842.2015.06.001 HUANG Zhi-qiang, DING Ya-ping, TAO Zhi-fei, et al. Research status and development direction of vibroseis at home and abroad[J]. Oil Field Equipment, 2015, 44(6): 1-5.
[7] 马磊,季颖,夏鹏翎.可控震源振动平板设计的研究探讨[J].物探装备,2015,25(5):297-301. doi:10.3969/j.issn.1671-0657.2015.05.005 MA Lei, JI Ying, XIA Peng-ling. Research and discussion on the design of vibroseis plate[J]. Equipment for Geophysical Prospecting, 2015, 25(5): 297-301.
[8] 郝磊.可控震源平板性能研究及改进[D].成都:西南石油大学机电工程学院,2014:39-40. HAO Lei. Study and improvement on the performance of vibroseis[D].Chengdu: Southwest Petroleum University, School of Mechatronic Engineering, 2014: 39-40.
[9] 潘吉明,卢耀祖,周中坚,等. 利用应变实时监测研究后桥疲劳裂纹扩展规律[J].同济大学学报,1999,27(6):745-748. PAN Ji-ming, LU Yao-zu, ZHOU Zhong-jian, et al. Spreading of rear suspension fatigue cracks by strain real-time monitoring[J]. Journal of Tongji University, 1999, 27(6): 745-748.
[10] 王宝艳.抽油机井油管疲劳断裂机理和预防措施的研究[D].杭州:浙江大学机械工程学院,2002:33-37. WANG Bao-yan. Research on mechanism and preventive measures of fatigue fracture of tubing in sucker rod pumping wells[D]. Hangzhou: Zhejiang University, School of Mechanical Engineering, 2002: 33-37.
[11] 王清远,刘永杰.结构金属材料超高周疲劳破坏行为[J].固体力学学报,2010,31(5):496-503. doi:10.19636/j.cnki.cjsm42-1250/o3.2010.05.010 WANG Qing-yuan, LIU Yong-jie. Ultrahigh cycle fatigue failure behavior of structural metal materials[J]. Chinese Journal of Solid Mechanics, 2010, 31(5): 496-503.
[12] 李亚智,张开达,张博平.一种FRP累积损伤模型及其在结构疲劳寿命估算中的应用[J].应用力学学报,2003,20(1):54-58,161. doi: 10.3969/j.issn.1000-4939.2003.01.011 LI Ya-zhi, ZHANG Kai-da, ZHANG Bo-ping. A FRP cumulative damage model and its application in fatigue life estimation of structures[J]. Chinese Journal of Applied Mechanics, 2003, 20(1): 54-58, 161.
[13] 吴富强,姚卫星.一个新的材料疲劳寿命曲线模型[J].中国机械工程,2008,19(13):1634-1637. WU Fu-qiang, YAO Wei-xing. A new model of the fatigue life curve of materials[J]. China Mechanical Engineering, 2008, 19(13): 1634-1637.
[14] 韩磊,孙良杰,王龙,等.均匀网格壁板三点弯曲过程的有限元分析与试验研究[J].塑性工程学报,2018,25(3):23-29. doi:10.3969/j.issn.1007-2012.2018.03.004 HAN Lei, SUN Liang-jie, WANG Long, et al. Finite element analysis and experimental research of three-point bending process for uniform mesh panels[J]. Journal of Plasticity Engineering, 2008, 25(3): 23-29.
[15] 吴少鹏,曹庭维,陈明宇,等.基于三点弯曲试验的ATB-25弯拉特性的研究[J].公路交通科技,2008,25(10):13-16. doi:10.3969/j.issn.1002-0268.2008.10.004 WU Shao-peng, CAO Ting-wei, CHEN Ming-yu, et al. Research on flexural-tension properties of ATB-25 using three-point bending test[J]. Journal of Highway and Transportation Research and Development, 2008, 25(10): 13-16.
[16] 赵永翔,高庆,王金诺.估计三种常用应力—寿命模型概率设计S—N曲线的统一方法[J].核动力工程,2001,22(1):43-51. ZHAO Yong-xiang, GAO Qing, WANG Jin-nuo. Uniffied approach for estimating the probability designing S-N curves of three common used fatigue stress-life models[J]. Nuclear Power Engineering, 2001, 22(1): 43-51.
[17] CUI Wei-cheng. A preliminary review of recent developments in life prediction methods of marine structures[J]. Journal of Ship Mechanics, 1999, 3(6): 55-79.
[18] 赵少汴.抗疲劳设计[M].北京:机械工业出版社,1997:47-48. ZHAO Shao-bian. Anti-fatigue design [M]. Beijing: China Machine Press, 1997: 47-48.
[19] 邵永波,LIE Seng-tjhen.K节点应力集中系数的试验和数值研究方法[J].工程力学,2006,23(S1):79-85. doi:10.3969/j.issn.1000-4750.2006.z1.016 SHAO Yong-bo, LIE Seng-tjhen. Expermental and numerical studies of the stress concentration factor (SCF) of tubular K-joints[J]. Engineering Mechanics, 2006, 23(S1): 79-85.
[1] 郝春永, 王栋亮, 郑津洋, 徐平, 顾超华. 铝内胆复合材料储氢瓶爆破压力与疲劳寿命关系研究[J]. 工程设计学报, 2021, 28(5): 594-601.
[2] 陈振, 李涛, 薛晓伟, 周阳, 敬爽, 陈言. 基于模糊综合评价法的可控震源振动器平板疲劳可靠性分析与优化[J]. 工程设计学报, 2021, 28(4): 415-425.
[3] 李松梅, 郑哲, 李帅帅, 常德功. 减振型三叉式万向联轴器结构及其疲劳寿命分析[J]. 工程设计学报, 2019, 26(5): 520-526.
[4] 王刚, 黄灵辉, 刘劲军. 超深矿井提升机卷筒动态应力与疲劳寿命研究[J]. 工程设计学报, 2018, 25(6): 703-710.
[5] 蔡玉强, 朱东升. 基于动力学仿真的高速曲柄压力机曲轴疲劳寿命分析[J]. 工程设计学报, 2017, 24(6): 680-686.
[6] 黄志强, 彭珣, 李刚. 可控震源振动器平板多频响应分析[J]. 工程设计学报, 2017, 24(6): 648-654.
[7] 任远, 张成成, 高靖云, 李孟光. 涡轮盘篦齿裂纹扩展的有限元数值模拟[J]. 工程设计学报, 2016, 23(2): 152-159,165.
[8] 申杰斌, 唐东林. 应力场强法中场径参数的研究[J]. 工程设计学报, 2016, 23(1): 22-27.
[9] 刘 喆,陶凤和,贾长治. 履带车辆传动轴疲劳寿命预测与结构改进[J]. 工程设计学报, 2015, 22(5): 431-437.
[10] 张 强,王海舰,胡 南. 起升载荷下门式起重机主梁损伤与疲劳寿命预测研究[J]. 工程设计学报, 2015, 22(5): 461-468.
[11] 赵春江,熊 杰,于晓凯,黄庆学,葛世东. 惯性载荷对高速角接触球轴承最优预紧力的影响分析[J]. 工程设计学报, 2015, 22(2): 150-154.
[12] 毛 君,姜 鹏,谢 苗. 斜切状态下滚筒采煤机液压拉杠力学分析与寿命预测[J]. 工程设计学报, 2015, 22(1): 95-100.
[13] 赵丽娟,李明昊. 基于多场耦合的采煤机摇臂壳体分析[J]. 工程设计学报, 2014, 21(3): 235-239.
[14] 李成林, 韩振南, 霍俊杰, 宋莎莎. 基于有限元的半挂牵引车车架疲劳寿命分析[J]. 工程设计学报, 2013, 20(5): 414-418.
[15] 陈永亮, 刘双, 韩瑶, 顾佩华. 造船液压机压头锁紧碟簧疲劳寿命稳健优化设计[J]. 工程设计学报, 2012, 19(3): 161-165.