智能设计 |
|
|
|
|
基于数字孪生与深度学习技术的制造加工设备智能化方法研究 |
王安邦, 孙文彬, 段国林 |
河北工业大学 机械工程学院, 天津 300401 |
|
Research on intelligent method of manufacturing and processing equipment based on digital twin and deep learning technology |
WANG An-bang, SUN Wen-bin, DUAN Guo-lin |
School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China |
[1] YURI K, DMITRII S. Artificial intelligence and cyber-physical mechanical processing systems in digital industry[J]. MATEC Web of Conferences, 2018, 2(3): 7-12. doi:10.1051/matecconf/201822605001 [2] 姚锡凡, 景轩, 周佳军, 等. 走向新一代可持续制造——包容性制造[J].计算机集成制造系统,2019, 25(10):2419-2432. doi:10.13196/j.cims.2019.10.002 YU Xi-fan, JING Xuan, ZHOU Jia-jun, et al. Towards next generation sustainable manufacturing—inclusive manufacturing[J]. Computer Integrated Manufacturing Systems, 2019, 25(10): 2419-2432. [3] 陶飞, 程颖, 程江峰, 等. 数字孪生车间信息物理融合理论与技术[J].计算机集成制造系统,2017,23(8): 1603-1611. doi:10.13196/j.cims.2017.08. 001 TAO Fei, CHENG Ying, CHENG Jiang-feng, et al. Theories and technologies for cyber-physical fusion in digital twin shop-floor[J]. Computer Integrated Manufacturing Systems, 2017, 23(8): 1603-1611. [4] 张荣,李伟平,莫同.深度学习研究综述[J].信息与控制,2018,47(4):385-397,410. doi:10.13976/j.cnki.xk.2018.8091 ZHANG Rong, LI Wei-ping, MO Tong. Review of deep learning[J]. Information and Control, 2018, 47(4): 385-397, 410. [5] SCHROEDER G N, STEINMETZ C, PEREIRA C E, et al. Digital twin data modeling with automationML and a communication methodology for data exchange[J]. IFAC-PapersOnLine, 2016, 49(30): 12-17. doi:10.1016/j. ifacol.2016.11.115 [6] ZHUANG C, LIU J, XIONG H. Digital twin-based smart production management and control framework for the complex product assembly shop-floor[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96(1/4): 1149-1163. doi:10.1007/s00170-018-1617-6 [7] VACHALEK J, BARTALSKY L, ROVNY O, et al. The digital twin of an industrial production line within the industry 4.0 concept[C]//2017 21st International Conference on Process Control(PC), Strbske Pleso, Jun. 6-9, 2017. doi:10.1109/PC.2017. 7976223 [8] RAZAVI-FAR R, HALLAJI E, FARAJZADEH-ZANJANI M, et al. Information fusion and semi-supervised deep learning scheme for diagnosing gear faults in induction machine systems[J]. IEEE Transactions on Industrial Electronics, 2019, 66(8): 6331-6342. doi:10.1109/TIE. 2018.2873546 [9] ZHENG Yu, YANG Sen, CHENG Huan-chong. An application framework of digital twin and its case study[J]. Journal of Ambient Intelligence and Humanized Computing, 2019, 10(3): 1141-1153. doi:10. 1007/s12652-018-0911-3 [10] 田明明, 叶继华, 王仕民, 等. 一种复杂环境下多传感器数据融合方法[J].山东大学学报(工学版),2019,49(3):1-7. doi:10.6040/j.issn.1672-3961.0.2017.426 TIAN Ming-ming, YE Ji-hua, WANG Shi-min, et al. A method of multi-sensor data fusion under the complicated environment[J].Journal of Shandong University (Engineering Science), 2019, 49(3): 1-7. [11] LIU C, VENGAYIL H, LU Y, et al. A cyber-physical machine tools platform using OPC UA and MTConnect[J]. Journal of Manufacturing Systems, 2019, 51: 61-74. doi:10.1016/j.jmsy.2019.04.006 [12] 陶飞, 刘蔚然, 张萌, 等. 数字孪生五维模型及十大领域应用[J].计算机集成制造系统,2019,25(1):1-18. doi:10.13196/j.cims.2019.01.001 TAO Fei, LIU Wei-ran, ZHANG Meng, et al. Five-dimension digital twin model and its ten applications[J]. Computer Integrated Manufacturing Systems, 2019, 25(1): 1-18. [13] LUO W, HU T, ZHANG C, et al. Digital twin for CNC machine tool: modeling and using strategy[J]. Journal of Ambient Intelligence and Humanized Computing, 2019, 10(3): 1129-1140. doi:10.1007/s12652-018-0946-5 [14] 刘恒利. 基于多物理域信息多模式融合与深度学习的智能加工机器自主感知方法研究[D].深圳:深圳大学机电与控制工程学院,2017:38-40. doi:CNKI:CDMD:2.1017.812416 LIU Heng-li. Research on autonomous sensing method of intelligent maching machine based on multi-mode fusion and deep learning of multi-physics information[D]. Shenzhen: Shenzhen University, School of Mechatronics and Control Engineering, 2017: 38-40. [15] NIE Wei-zhi, WANG Kun, WANG Hong-tao, et al. The assessment of 3D model representation for retrieval with CNN-RNN networks[J]. Multimedia Tools and Applications, 2019, 78(12): 16979-16994. doi: 10. 1007/s11042-018-7102-2 [16] 步亚男. 桌面级3D打印机系统的设计与实现[D]. 大连:辽宁师范大学计算机与信息技术学院, 2017:3-4. doi:CNKI:CDMD:2.1017.115941 BU Ya-nan. Design and implementation of desktop 3D printing systems [D]. Dalian: Liaoning Normal University, School of Computer and Information Technology, 2017: 3-4. [17] 周婧, 段国林, 卢林, 等. 陶瓷浆料微流挤压成形关键问题研究[J].中国机械工程,2015,26(22):3097-3102. doi:10.3969/j.issn.1004-132X.2015.22.018 ZHOU Jing, DUAN Guo-lin, LU Lin, et al. Research on several key problems of microflow extrusion forming of ceramic slurry[J]. China Mechanical Engineering, 2015, 26(22): 3097-3102. doi:10.3969/j.issn.1004-132X.2015.22.018 [18] 闫存富. 陶瓷膏体低温成形过程控制及液相迁移研究[D].西安:西安理工大学机械与精密仪器工程学院,2018:57-60. YAN Cun-fu. Study on process control and liquid phase migration of freeze-form extrusion fabrication for ceramic paste[D]. Xi'an: Xi'an University of Technology, School of Mechanical and Precision Instrument Engineering, 2018: 57-60. [19] 周梅. PID-模糊控制联用法在塑料加工工艺控制方面的研究进展[J].工程塑料及应用,2018,46(6):143-147. doi:10.3969/j.issn.1001-3539.2018.06.029 ZHOU Mei. Research progress on the control of plastic processing technology by PID-fuzzy control[J]. Engineering Plastics Application, 2018, 46(6): 143-147. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|