Please wait a minute...
工程设计学报  2023, Vol. 30 Issue (5): 601-607    DOI: 10.3785/j.issn.1006-754X.2023.00.065
机械优化设计     
聚变堆偏滤器拓扑优化设计与稳态热分析
张小强1(),鲁碧为1,2,刘家琴3,4,吴玉程1,4,5()
1.合肥工业大学 材料科学与工程学院,安徽 合肥 230009
2.合肥中科重明科技有限公司,安徽 合肥 230000
3.合肥工业大学 工业与装备技术研究院,安徽 合肥 230009
4.合肥工业大学 有色金属与加工技术国家地方联合工程研究中心,安徽 合肥 230009
5.合肥工业大学 先进能源与环境材料国际科技合作基地,安徽 合肥 230009
Topology optimization design and steady-state thermal analysis of fusion reactor divertor
Xiaoqiang ZHANG1(),Biwei LU1,2,Jiaqin LIU3,4,Yucheng WU1,4,5()
1.School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
2.Hefei Zhongke Chongming Technology Co. , Ltd. , Hefei 230000, China
3.Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei 230009, China
4.National and Local Joint Engineering Research Center for Nonferrous Metal and Processing Technology, Hefei University of Technology, Hefei 230009, China
5.Advanced Energy and Environmental Materials International Science and Technology Cooperation Base, Hefei University of Technology, Hefei 230009, China
 全文: PDF(2755 KB)   HTML
摘要:

为了提高聚变堆偏滤器的冷却能力,以满足其高温服役性能需求,基于一体化增材制造技术,以换热量最大为设计目标,采用变密度法对偏滤器中的W/Cu模块进行拓扑优化设计和模型重构,并采用大型商用仿真软件对拓扑优化后的W/Cu模块进行有限元数值模拟及温度场、应力场计算。结果表明,在10 MW/m2稳态热流密度条件下,拓扑优化后W/Cu模块的最高温度降低了108.5 ℃,仅为512.3 ℃;W/Cu模块界面处的最大热应力下降了264.2 MPa,仅为486.5 MPa,说明应力分布得到明显改善;W/Cu模块的总变形和弹性应变均大幅减小。该拓扑优化结构的应用可大大提升聚变堆偏滤器实现低成本、高效率、高可靠性的一体化增材制造的可行性。

关键词: 聚变堆偏滤器增材制造W/Cu模块拓扑优化稳态热分析    
Abstract:

In order to improve the cooling capacity of the divertor in fusion reactor and meet the requirements of its high temperature service performance, based on the integrated additive manufacturing technology, the topology optimization design and model reconstruction for the W/Cu module in divertor were carried out by using variable density method with the design goal of maximizing heat transfer. Meanwhile, the finite element numerical simulation and the calculation of temperature field and stress field for the W/Cu module after topology optimization were carried out by using large commercial simulation software. The results showed that under the condition of 10 MW/m2 steady-state heat flux density, the maximum temperature of the W/Cu module after topology optimization was reduced by nearly 108.5 ℃, to only 512.3 ℃; the maximum interface stress of the W/Cu module was reduced by nearly 264.2 MPa, to only 486.5 MPa, which indicated that the stress distribution was significantly improved; the total deformation and elastic strain of the W/Cu module were greatly reduced. The application of the topology optimization structure can greatly improve the feasibility of integrated additive manufacturing of divertors with low cost, high efficiency and high reliability.

Key words: fusion reactor    divertor    additive manufacturing    W/Cu module    topology optimization    steady-state thermal analysis
收稿日期: 2023-03-01 出版日期: 2023-11-03
CLC:  TL 62+6  
基金资助: 国家重大研发计划磁约束核聚变重大专项(2022YFE03140001);国家自然科学基金国际(地区)合作研究与交流项目(52020105014);国家自然科学基金面上项目(51474083);国家“清洁能源新材料与技术”高校学科创新引智基地计划(B18018)
通讯作者: 吴玉程     E-mail: 2021110271@mail.hfut.edu.cn;ycwu@hfut.edu.cn
作者简介: 张小强(1997—),男,安徽宿州人,硕士生,从事聚变堆偏滤器材料研究,E-mail: 2021110271@mail.hfut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张小强
鲁碧为
刘家琴
吴玉程

引用本文:

张小强,鲁碧为,刘家琴,吴玉程. 聚变堆偏滤器拓扑优化设计与稳态热分析[J]. 工程设计学报, 2023, 30(5): 601-607.

Xiaoqiang ZHANG,Biwei LU,Jiaqin LIU,Yucheng WU. Topology optimization design and steady-state thermal analysis of fusion reactor divertor[J]. Chinese Journal of Engineering Design, 2023, 30(5): 601-607.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2023.00.065        https://www.zjujournals.com/gcsjxb/CN/Y2023/V30/I5/601

图1  平板型W/Cu模块
图2  W/Cu模块流道结构设计模型
图3  W/Cu模块流道目标函数值及体积分数的优化迭代曲线
图4  W/Cu模块流道的拓扑优化过程
图5  W/Cu模块流道拓扑优化结果光滑处理
图6  W/Cu模块流道拓扑优化模型几何重构
图7  拓扑优化前后的W/Cu模块三维物理模型
材料温度/℃杨氏模量/GPa正切模量/GPa

热膨胀系数/

10-6 (℃)-1

导热系数/

[W/(m·℃)]

密度/(kg/m3)屈服强度/MPa

比热容/

[J/(kg?℃)]

W203981.33.9317419 3001360129
5003901.04.2113319 180854144
1 0003680.84.5111019 040465158
OFHC201251.516.74038 96069390
2001101.317.250
Cu4001000.917.83798 93345
表1  W、Cu材料的基本物性参数
图8  W/Cu模块的温度分布云图及对流换热系数
图9  10 MW/m2稳态热流密度下W/Cu模块的温度分布云图
模块热应力/MPa总变形/μm弹性应变/%
优化W/Cu模块846.833.10.49
传统W/Cu模块1 325.573.90.75
表2  10 MW/m2 稳态热流密度下W/Cu模块的结构分析结果
图10  10 MW/m2稳态热流密度下W/Cu模块的热应力分布云图
1 BIGOT B. ITER assembly phase: progress toward first plasma[J]. Fusion Engineering and Design, 2021, 164: 112207.
2 HIRAI T, BARABASH V, ESCOURBIAC F, et al. ITER divertor materials and manufacturing challenges[J]. Fusion Engineering and Design, 2017, 125: 250-255.
3 罗来马,谭晓月,罗广南,等.第一壁材料W/Cu界面设计与制备研究现状[J].核聚变与等离子体物理,2014,34(4):340-347. doi:10.3969/j.issn.0254-6086.2014.04.010
LUO L M, TAN X Y, LUO G N, et al. Current status of design and manufacture on W/Cu interface of the first wall material[J]. Nuclear Fusion and Plasma Physics, 2014, 34(4): 340-347.
doi: 10.3969/j.issn.0254-6086.2014.04.010
4 王健,宋云涛,郭后扬,等. EAST偏滤器钨铜单体水冷模块参数优化[J].核聚变与等离子体物理,2013,33(1):72-77. doi:10.3969/j.issn.0254-6086.2013.01.013
WANG J, SONG Y T, GUO H Y, et al. Parameters optimization for EAST divertor W/Cu water-cooling monoblocks[J]. Nuclear Fusion and Plasma Physics, 2013, 33(1): 72-77.
doi: 10.3969/j.issn.0254-6086.2013.01.013
5 钱新元,宋云涛,叶民友,等.聚变堆偏滤器冷却通道结构优化分析[J].原子能科学技术,2015,49(7):1273-1279. doi:10.7538/yzk.2015.49.07.1273
QIAN X Y, SONG Y T, YE M Y, et al. Optimization analysis for structure of cooling channel of fusion reactor divertor[J]. Atomic Energy Science and Technology, 2015, 49(7): 1273-1279.
doi: 10.7538/yzk.2015.49.07.1273
6 TOKITANI M, HAMAJI Y, HIRAOKA Y, et al. Advanced multi-step brazing for fabrication of a divertor heat removal component[J]. Nuclear Fusion, 2021, 61(4): 046016.
7 JIMÉNEZ A, BIDARE P, HASSANIN H, et al. Powder-based laser hybrid additive manufacturing of metals: a review[J]. The International Journal of Advanced Manufacturing Technology, 2021, 114: 63-96.
8 RIBEIRO T P, BERNARDO L F A, ANDRADE J M A. Topology optimisation in structural steel design for additive manufacturing[J]. Applied Sciences, 2021, 11(5): 2112.
9 ZHU J H, ZHOU H, WANG C, et al. A review of topology optimization for additive manufacturing: status and challenges[J]. Chinese Journal of Aeronautics, 2021, 34(1): 91-110.
10 ZHANG C, WANG S, LI J, et al. Additive manufacturing of products with functional fluid channels: a review[J]. Additive Manufacturing, 2020, 36: 101490.
11 ALEXANDERSEN J, ANDREASEN C S. A review of topology optimisation for fluid-based problems[J]. Fluids, 2020, 5(1): 29.
12 MATSUMORI T, KONDOH T, KAWAMOTO A, et al. Topology optimization for fluid-thermal interaction problems under constant input power[J]. Structural and Multidisciplinary Optimization, 2013, 47: 571-581.
13 LIU Z, ZENG X, ZHAO W, et al. A topology optimization design of three-dimensional cooling plate for the thermal homogeneity of lithium-ion batteries[J]. Energy Conversion and Management: X, 2022, 14: 100215.
14 ZOU A Q, CHUAN R, QIAN F, et al. Topology optimization for a water-cooled heat sink in micro-electronics based on Pareto frontier[J]. Applied Thermal Engineering, 2022, 207: 118128.
15 ZHAO X, ZHOU M D, SIGMUND O, et al. A “poor man’s approach” to topology optimization of cooling channels based on a Darcy flow model[J]. International Journal of Heat and Mass Transfer, 2018, 116: 1108-1123.
16 LI H, DING X H, JING D L, et al. Experimental and numerical investigation of liquid-cooled heat sinks designed by topology optimization[J]. International Journal of Thermal Sciences, 2019, 146: 106065.
17 刘云飞,熊敏,丁晓红.液冷板散热流道的拓扑优化体积分数研究[J].软件工程,2022,25(9):42-46,41.
LIU Y F, XIONG M, DING X H. Study on volume fraction for topology optimization of heat sink passages on liquid-cooled plate[J]. Software Enginnering, 2022, 25(9): 42-46, 41.
18 李昊,丁晓红,景大雷.液冷通道分布优化设计的仿真和试验研究[J].机械工程学报,2019,55(10):198-206. doi:10.3901/jme.2019.10.198
LI H, DING X H, JING D L. Experimental and numerical investigation of fluid cooling channel layout designed by topology optimization[J]. Journal of Mechanical Engineering, 2019, 55(10): 198-206.
doi: 10.3901/jme.2019.10.198
19 魏啸,丁晓红.不同目标函数的传热结构拓扑优化研究[J].电子科技,2017,30(2):156-160.
WEI X, DING X H. Topology optimization of transfer structure for different objective functions[J]. Electronic Science and Technology, 2017, 30(2): 156-160.
20 薛奎,陈俊凌,朱大焕. ITER偏滤器W/Cu单体模块热-结构模拟与分析[J].核聚变与等离子体物理,2013,33(4):354-358. doi:10.3969/j.issn.0254-6086.2013.04.011
XUE K, CHEN J L, ZHU D H. Thermo-mechanical simulation and analysis of W/Cu mono-block for ITER divertor[J]. Nuclear Fusion and Plasma Physics, 2013, 33(4): 354-358.
doi: 10.3969/j.issn.0254-6086.2013.04.011
[1] 郑小飞,黄镇海,马小龙,王建新,王斌锐. 基于SIMP方法的爬杆机器人结构优化与分析[J]. 工程设计学报, 2023, 30(3): 342-352.
[2] 王景良,朱天成,朱龙彪,许飞云. 连续体结构的变密度拓扑优化方法研究[J]. 工程设计学报, 2022, 29(3): 279-285.
[3] 王春香, 王耀, 郝志博. 增材制造中基于零件特征的分段自适应分层算法[J]. 工程设计学报, 2020, 27(3): 373-379.
[4] 张鹄志, 马哲霖, 黄海林, 金浩, 彭玮. 不同位移边界条件下钢筋混凝土深梁拓扑优化[J]. 工程设计学报, 2019, 26(6): 691-699.
[5] 陈静, 侯伟, 周毅博, 王修专, 储松林. 增材制造使能的航空发动机复杂构件快速研发[J]. 工程设计学报, 2019, 26(2): 123-132.
[6] 张日成, 赵炯, 吴青龙, 熊肖磊, 周奇才, 焦洪宇. 考虑结构稳定性的变密度拓扑优化方法[J]. 工程设计学报, 2018, 25(4): 441-449.
[7] 杜义贤, 李荣, 徐明, 田启华, 周祥曼. 负泊松比微结构拓扑优化设计[J]. 工程设计学报, 2018, 25(4): 450-456.
[8] 唐华平, 曾理, 王胜泽, 陈昊森. 基于拓扑优化的重型矿用自卸车翻车保护结构设计[J]. 工程设计学报, 2018, 25(3): 295-301.
[9] 邱瑞斌, 雷飞, 陈园, 王琼. 基于权重比的车架多工况拓扑优化方法研究[J]. 工程设计学报, 2016, 23(5): 444-452.
[10] 陈健伟, 朱大昌, 张荣兴, 朱城伟. 3-RPRR类平面全柔性并联机构拓扑优化设计[J]. 工程设计学报, 2016, 23(3): 251-255,270.
[11] 谢延敏, 何育军, 卓德志, 熊文诚. 高强度钢板U形件热冲压凹模结构拓扑优化[J]. 工程设计学报, 2016, 23(1): 60-66.
[12] 孙 楷,薄瑞峰,路建鹏,李瑞琴. 基于整体应变的柔顺机构多目标拓扑优化设计[J]. 工程设计学报, 2015, 22(6): 575-580.
[13] 张 坤,丁晓红,倪维宇,王海华. 汽车座椅骨架构件布局设计方法[J]. 工程设计学报, 2015, 22(2): 166-171.
[14] 田启华,王进学,杜义贤,王 涛. 基于密度-敏度层次更新策略的三维连续体结构拓扑优化[J]. 工程设计学报, 2015, 22(2): 155-160.
[15] 李文军,周奇才,吴青龙,熊肖磊. 几何非线性臂架结构稳定拓扑优化[J]. 工程设计学报, 2014, 21(5): 449-455.