Please wait a minute...
工程设计学报  2019, Vol. 26 Issue (6): 691-699    DOI: 10.3785/j.issn.1006-754X.2019.00.011
优化设计     
不同位移边界条件下钢筋混凝土深梁拓扑优化
张鹄志1,2, 马哲霖1, 黄海林1,2, 金浩1, 彭玮1
1.湖南科技大学 土木工程学院, 湖南湘潭 411201
2.湖南科技大学 结构抗风与振动控制湖南省重点实验室, 湖南湘潭 411201
Topology optimization for reinforced concrete deep beam with different displacement boundaries
ZHANG Hu-zhi1,2, MA Zhe-lin1, HUANG Hai-lin1,2, JIN Hao1, PENG Wei1
1.School of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
2.Hunan Provincial Key Laboratory of Structures for Wind Resistance and Vibration Control, Hunan University of Science and Technology, Xiangtan 411201, China
 全文: PDF(3172 KB)   HTML
摘要: 为了探讨位移边界条件对钢筋混凝土深梁拓扑优化的影响,同时为深梁设计提供有效的力学理论依据,以ANSYS有限元分析软件为平台,利用其参数化设计语言的二次开发功能,并借助具有直观高效拓扑寻优能力的渐进演化类算法,分别对4根支座约束条件不同的双侧开洞深梁、4根开洞情形不同的两端固定铰支深梁以及3根支座约束与开洞情形均有一定差别的连续深梁进行拓扑优化,并对不同拓扑解进行对比分析。结果表明:集中力作用下深梁的拓扑解均近似为杆系结构,提高支座约束程度可以使传力路径增加,传力方式更直接;当深梁因工程原因或功能需求而不得不设置洞口时,洞口位置离原传力路径越远则越有利于结构内部的传力;连续深梁与单跨深梁的拓扑解的主要差别体现在中支座处的梁顶拉杆上,这些拉杆能够提高结构的整体刚度。因此,在工程设计中,针对不同位移边界条件下的钢筋混凝土深梁,可以根据它们拓扑解的差异以及造成这些差异的力学机理,采取不同的设计方案,包括支座约束、开洞情形以及配筋方式等的选取。研究结果可为深梁这类复杂受力构件的设计提供力学理论依据。
关键词: 钢筋混凝土深梁位移边界拓扑优化约束条件开洞情形    
Abstract: In order to discuss the influence of displacement boundary conditions on the topology optimization for reinforced concrete deep beams, and provide more effective mechanical theoretical basis for the design of deep beams, four reinforced concrete deep beams with openings in both side and different bearing constraints, four reinforced concrete deep beams with pin supports at both ends and different opening conditions and three continuous deep beams with different bearing constraints and opening conditions were separately topological optimized and the different topological solutions were compared, which was based on the secondary development of parametric design languages in the finite elements analysis software of ANSYS and the evolutionary topology optimization algorithm with intuitive and effective ability of topological evolution. The results indicated that the topological solutions of deep beams applied concentrated force were approximate to truss structures. The raising in degree of bearing constraint might increase the load-transfer path and make the load-transfer more direct. When the deep beam had to be set up openings for engineering reasons or function requirements, the farther the location of the opening from the original force transmission path, the more favorable the internal force transmission of the structure. The key distinction of topological solutions of continuous deep beams and single-span ones was embodied by the tie-bar in the top of the beam at the middle support, since the tie-bar could improve the integral stiffness of structures. Therefore, in the engineering design, for the reinforced concrete deep beams with different displacement boundaries, different design schemes can be adopted according to the differences of their topological solutions and the corresponding mechanisms that cause these differences, including support constraints, opening conditions and reinforcement methods. Research results can provide mechanical theoretical basis for the design of complex stressed members such as deep beams..
Key words: reinforced concrete deep beam    displacement boundary    topology optimization    constraint condition    opening condition
收稿日期: 2019-08-09 出版日期: 2019-12-28
CLC:  TU 375.5  
基金资助: 国家自然科学基金青年基金资助项目(51508182);湖南省大学生研究性学习和创新性实验计划项目(201712649001)
作者简介: 张鹄志(1984—),男,湖南冷水江人,副教授,博士,从事混凝土结构设计基本理论与结构优化研究,E-mail:zhanghz_hnu@163.com,https://orcid.org/0000-0003-1909-867X
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张鹄志
马哲霖
黄海林
金浩
彭玮

引用本文:

张鹄志, 马哲霖, 黄海林, 金浩, 彭玮. 不同位移边界条件下钢筋混凝土深梁拓扑优化[J]. 工程设计学报, 2019, 26(6): 691-699.

ZHANG Hu-zhi, MA Zhe-lin, HUANG Hai-lin, JIN Hao, PENG Wei. Topology optimization for reinforced concrete deep beam with different displacement boundaries. Chinese Journal of Engineering Design, 2019, 26(6): 691-699.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2019.00.011        https://www.zjujournals.com/gcsjxb/CN/Y2019/V26/I6/691

[1] HAREENDRAN S P, KOTHAMUTHYALA R S, THAMMISHETTI N, et al. Improved softened truss model for reinforced concrete members under combined loading including torsion[J]. Mechanics of Advanced Materials and Structures, 2019, 26(1): 1-10. doi: 10. 1080/15376494.2018.1534171
[2] 刘舜尧, 李进, 贺浩. 基于渐进结构优化的取料梁腹板拓扑优化[J]. 工程设计学报,2011,18(3):174-177. doi: 10.3785/j.issn.1006-754X.2011.03.004 LIU Shun-yao, LI Jin, HE Hao. Topological optimization of the main girder web based on ESO[J]. Chinese Journal of Engineering Design, 2011, 18(3): 174-177.
[3] 刘霞, 易伟建. 钢筋混凝土平面构件的配筋优化[J]. 计算力学学报,2010,27(1):110-114,126. doi:10. 7511/jslx20101018 LIU Xia, YI Wei-jian. Reinforcement layout optimization of RC plane components [J]. Chinese Journal of Computational Mechanics, 2010, 27(1): 110-114, 126.
[4] MICHELL A G M. The limits of economy of materials in frame-structures[J]. Philosophical Magazine Series 6, 1904, 8(47): 589-597. doi: 10.1080/14786440409463229
[5] BIRKER T. Generalized Michell structures—exact-least weight truss layouts for combined stress and displacement constraints: part II—analytical solutions for a two-bar topology[J]. Structural Optimization, 1995, 9(3/4): 214-219. doi:10.1007/BF01743973
[6] CONLAN-SMITH C, BHATTACHARYYA A, KAI A J. Optimal design of compliant mechanisms using functionally graded materials[J]. Structural & Multidisciplinary Optimization, 2018, 57(1): 197-212.doi:10.1007/s00158-017-1744-y
[7] XIE Y M, STEVEN G P. A simple evolutionary procedure for structural optimization[J]. Computers & Structures, 1993, 49(5): 885-896.doi:10.1016/0045-7949(93)90035-c
[8] 焦洪宇, 周奇才, 李文军, 等.基于变密度法的周期性拓扑优化[J].机械工程学报,2013,49(13):132-138. doi:10.3901/JME.2013.13.132 JIAO Hong-yu, ZHOU Qi-cai, LI Wen-jun. et al. Periodic topology optimization using variable density method[J]. Journal of Mechanical Engineering, 2013, 49(13): 132-138.
[9] 贺丹, 刘书田. 渐进结构优化方法失效机理分析与改进策略[J].计算力学学报,2014,31(3):310-314. doi: 10.7511/jslx201403005 HE Dan, LIU Shu-tian. The causative agent of invalidation and improvement strategy for evolutionary structural optimization[J]. Chinese Journal of Computational Mechanics, 2014, 31(3): 310-314.
[10] QUERIN O M, STEVEN G P, XIE Y M. Evolutionary structural optimization using an additive algorithm[J]. Finite Elements in Analysis and Design, 2000, 34(3/4): 291-308. doi:10.1016/s0168-874x(99)00044-x
[11] SEIFI H, JAVAN A R, XU S, et al. Design optimization and additive manufacturing of nodes in gridshell structures[J]. Engineering Structures, 2018, 160(4): 161-170. doi:10.1016/j.engstruct.2018.01.036
[12] 易伟建, 刘霞. 遗传演化结构优化算法[J]. 工程力学, 2004,21(3): 66-71. doi: 10.3969/j.issn.1000-4750.2004.03.013 YI Wei-jian, LIU Xia. Genetic evolutionary structural optimization[J]. Engineering Mechanics, 2004, 21(3): 66-71.
[13] ZHANG H Z, LIU X, YI W J, et al. Performance comparison of shear walls with openings designed using elastic stress and genetic evolutionary structural optimization methods[J]. Structural Engineering and Mechanics, 2018, 65(3): 303-314. doi:10.12989/sem.2018.65.3.303
[14] SIMONETTI H L, ALMEIDA V S, NEVES F D A D. Smoothing evolutionary structural optimization for structures with displacement or natural frequency constraints[J]. Engineering Structures, 2018, 163(5): 1-10. doi:10.1016/j.engstruct.2018.02.032
[15] 王磊佳, 张鹄志, 祝明桥. 加窗渐进结构优化算法[J]. 应用力学学报,2018,35(5):1037-1044,1185. doi:10.11776/cjam.35.05.D032 WANG Lei-jia, ZHANG Hu-zhi, ZHU Ming-qiao. Windowed evolutionary structural optimization[J]. Chinese Journal of Applied Mechanics, 2018, 35(5): 1037-1044, 1185.
[16] SUBEDI N K, ARABZADEH A. Some experimental results for reinforced concrete deep beams with fixed-end supports[J]. Structural Engineering Review, 1994, 22(5): 105-118. doi:10.1016/0029-8018(94)90012-4
[17] 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 混凝土结构设计规范: GB 50010—2010(2015版) [S]. 北京:中国建筑工业出版社,2015:19-21. Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Code for design of concrete structures: GB50010—2010 (2015 Edition) [S]. Beijing: China Architecture & Building Press, 2015: 19-21.
[18] American Concrete Institute. Building code requirements for structural concrete and commentary: ACI 318-14[S]. Michigan, USA: ACI Committee 318, 2014: 385-398.
[19] HEMP W S. Optimum structure [M]. Oxford: Clarendon Press, 1973: 70-101.
[1] 王景良,朱天成,朱龙彪,许飞云. 连续体结构的变密度拓扑优化方法研究[J]. 工程设计学报, 2022, 29(3): 279-285.
[2] 王克飞, 时培成, 彭闪闪, 刁杰胜. 不同边界约束条件下某汽车白车身静刚度分析[J]. 工程设计学报, 2019, 26(4): 441-451.
[3] 张日成, 赵炯, 吴青龙, 熊肖磊, 周奇才, 焦洪宇. 考虑结构稳定性的变密度拓扑优化方法[J]. 工程设计学报, 2018, 25(4): 441-449.
[4] 杜义贤, 李荣, 徐明, 田启华, 周祥曼. 负泊松比微结构拓扑优化设计[J]. 工程设计学报, 2018, 25(4): 450-456.
[5] 唐华平, 曾理, 王胜泽, 陈昊森. 基于拓扑优化的重型矿用自卸车翻车保护结构设计[J]. 工程设计学报, 2018, 25(3): 295-301.
[6] 邱瑞斌, 雷飞, 陈园, 王琼. 基于权重比的车架多工况拓扑优化方法研究[J]. 工程设计学报, 2016, 23(5): 444-452.
[7] 杨金川, 田茂君, 姚智慧, 陈浩. 滚动汇流环装配力学特性分析与优化设计[J]. 工程设计学报, 2016, 23(4): 364-370.
[8] 陈健伟, 朱大昌, 张荣兴, 朱城伟. 3-RPRR类平面全柔性并联机构拓扑优化设计[J]. 工程设计学报, 2016, 23(3): 251-255,270.
[9] 谢延敏, 何育军, 卓德志, 熊文诚. 高强度钢板U形件热冲压凹模结构拓扑优化[J]. 工程设计学报, 2016, 23(1): 60-66.
[10] 孙 楷,薄瑞峰,路建鹏,李瑞琴. 基于整体应变的柔顺机构多目标拓扑优化设计[J]. 工程设计学报, 2015, 22(6): 575-580.
[11] 田启华,王进学,杜义贤,王 涛. 基于密度-敏度层次更新策略的三维连续体结构拓扑优化[J]. 工程设计学报, 2015, 22(2): 155-160.
[12] 张 坤,丁晓红,倪维宇,王海华. 汽车座椅骨架构件布局设计方法[J]. 工程设计学报, 2015, 22(2): 166-171.
[13] 李文军,周奇才,吴青龙,熊肖磊. 几何非线性臂架结构稳定拓扑优化[J]. 工程设计学报, 2014, 21(5): 449-455.
[14] 杜义贤, 陈德, 周俊雄. 多载荷多工位转盘拓扑优化设计[J]. 工程设计学报, 2013, 20(3): 195-198.
[15] 王婷, 姚涛, 段国林, 蔡瑾. 基于ESO的夹层阻尼圆锯片减振降噪拓扑优化设计[J]. 工程设计学报, 2013, 20(1): 27-30.