Please wait a minute...
工程设计学报  2018, Vol. 25 Issue (3): 295-301    DOI: 10.3785/j.issn.1006-754X.2018.03.007
优化设计     
基于拓扑优化的重型矿用自卸车翻车保护结构设计
唐华平, 曾理, 王胜泽, 陈昊森
中南大学 机电工程学院, 湖南 长沙 410083
Design of roll-over protective structure for heavy mining dumper based on topology optimization
TANG Hua-ping, ZENG Li, WANG Sheng-ze, CHEN Hao-sen
College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
 全文: PDF(4943 KB)   HTML
摘要:

翻车保护结构(roll-over protective structure,ROPS)是安装在工程车辆驾驶室中的一套被动保护装置,能在翻车事故中为驾驶人员提供有效的保护。为解决ROPS承载能力、刚度、轻量化和侧向吸能效果之间的矛盾,将基于变密度法的拓扑优化技术引入重型矿用自卸车ROPS设计中,以解决ROPS在给定设计域内的材料最优分布问题,提高ROPS侧向吸能效果和垂向、纵向的刚度,减轻自重。首先,利用OptiStruct结构优化模块对ROPS进行拓扑优化设计,以多工况组合应变能最小为优化目标,按照国际标准规定的性能要求施加载荷和约束条件。基于拓扑优化结果,对ROPS进行详细设计。然后,利用显示动力分析软件LS-DYNA对ROPS的最终设计模型进行动态加载分析。最后对优化后ROPS的性能与原ROPS的性能进行对比分析。结果表明:拓扑优化设计后的ROPS在3个工况下都没有入侵DLV(deflection-limiting volume,挠曲极限量),满足国际标准中的承载能力要求;在侧向加载中最大能量吸收达到175 kJ,满足国际标准中的侧向能量吸收要求;相较于原ROPS,拓扑优化设计后的ROPS达到侧向能量吸收要求所需的载荷从1 324.5 kN减小到1 231 kN,加载中心点的垂向位移减小21.3%,纵向位移减小34.4%,质量减小24.1%。研究结果为重型矿用自卸车ROPS的设计提供了新方法,对后续ROPS的设计与改进有一定的指导作用。

关键词: 翻车保护结构有限元法拓扑优化安全性能    
Abstract:

The roll-over protective structure (ROPS) is a set of passive protective device installed on the cab of the engineering vehicle, which can provide effective protection for the driver in the roll-over accident. To solve contradictions between carrying capacity, rigidity, light weight and lateral endergonic effects of ROPS, topological optimization technology based on variable-density method has been introduced to ROPS design of heavy mining dumper, which can solve the problem of ROPS about optimal distribution of materials in a given design area and improve its lateral endergonic effect and vertical and parallel rigidity and reduce self weight. Firstly, the OptiStruct structure optimization module was used to make topology optimization design of ROPS. The optimization objective was to minimize the strain energy in multiple working conditions. Loads and constraints were applied according to the international standards. According to the topology optimization results, the detailed design was carried out. Afterwards, the dynamic analysis software LS-DYNA was used to make dynamic loading analysis for ROPS final design model. Finally, performance contrastive analysis between optimized ROPS and original ROPS was made. Results showed that the topology optimized ROPS did not invade DLV (deflection-limiting volume) under the three working conditions and met the international standards of carrying capacity requirements. The maximum energy absorption in lateral loading reached 175 kJ, which met the requirements of the international standards for the absorption of lateral energy. Compared with the original ROPS, the topology optimized ROPS reduced the load required for the lateral energy absorption from 1 324.5 kN to 1 231 kN. The vertical displacement of the loading center was reduced by 21.3% and the longitudinal displacement was reduced by 34.4%. Its quality was decreased by 24.1%. The research results provide a new method for the design of ROPS of heavy mining dumper, and the researching achievement has certain significance for the follow-up design and improvement of ROPS.

Key words: roll-over protective structure (ROPS)    finite element method    topology optimization    safety performance
收稿日期: 2017-11-14 出版日期: 2018-06-28
CLC:  U469.4  
基金资助:

国家高技术研究发展计划(863计划)项目(SS2012AA041809);湖南省科技重大专项计划项目(2010FJ1003-2)

通讯作者: 曾理(1993-),男,湖南资兴人,硕士生,从事结构设计与仿真研究,E-mail:81707055@qq.com,http://orcid.org/0000-0001-9089-6282     E-mail: 81707055@qq.com
作者简介: 唐华平(1964-),男,湖南资兴人,教授,博士,从事智能结构设计与控制、机械运动与振动控制和仿生机构设计等研究,E-mail:huapingt@csu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
唐华平
曾理
王胜泽
陈昊森

引用本文:

唐华平, 曾理, 王胜泽, 陈昊森. 基于拓扑优化的重型矿用自卸车翻车保护结构设计[J]. 工程设计学报, 2018, 25(3): 295-301.

TANG Hua-ping, ZENG Li, WANG Sheng-ze, CHEN Hao-sen. Design of roll-over protective structure for heavy mining dumper based on topology optimization[J]. Chinese Journal of Engineering Design, 2018, 25(3): 295-301.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2018.03.007        https://www.zjujournals.com/gcsjxb/CN/Y2018/V25/I3/295

[1] 唐华平,来佳峰,姜永正,等.大型自卸车翻车保护结构有限元分析[J].中南大学学报(自然科学版),2013,44(12):4847-4854. TANG Hua-ping, LAI Jia-feng, JIANG Yong-zheng, et al. Finite element analysis on roll-over protective structure of large dump truck[J]. Journal of Central South University (Science and Technology), 2013, 44(12):4847-4854.
[2] 马守业.矿山车辆驾驶室翻车保护结构安全要求与计算机仿真[J].煤矿安全,2017,48(2):120-123. MA Shou-ye. Safety requirements of roll-over-protective structure for mine vehicle cab and computer simulation[J]. Safety in Coal Mines, 2017, 48(2):120-123.
[3] AGIUS D, KOUROUSIS K, TAKLA M, et al. Enhanced nonlinear material modelling for the analysis and qualification of rollover protective structures[J]. Proceedings of the Institution of Mechanical Engineers Part D:Journal of Automobile Engineering, 2016, 230(11):1558-1568.
[4] DUMITRACHE P, GOANTA A M. Validation by numerical simulation of the behaviour of protective structures of machinery cabins subjected to standardized shocks[J]. IOP Conference Series:Materials Science and Engineering, 2017, 227(1):012041.
[5] 彭骥,谭峰,卫亚斌,等.快堆装载机支臂结构的动静态性能拓扑优化设计方法[J].工程科学与技术,2017,49(S2):251-256. PENG Ji, TAN Feng, WEI Ya-bin, et al. Dynamic-static topology optimization design method of fast reactor loader arm[J]. Advanced Engineering Sciences, 2017, 49(S2):251-256.
[6] 许洪斌,陈亚洁,刘妤,等.微耕机操纵装置动态特性分析及结构拓扑优化[J].机械设计,2017,34(4):80-85. XU Hong-bin, CHEN Ya-jie, LIU Yu, et al. Dynamic characteristics analysis and topology optimization of tiller manipulator[J]. Journal of Machine Design, 2017, 34(4):80-85.
[7] MARIANO V, OSVALDO M, PASCUAL M. Topology design for multiple loading conditions of continuum structures using isolines and isosurfaces[J]. Finite Elements in Analysis & Design, 2010, 46(3):229-237.
[8] 方传青,宋立霞.某新型矿用自卸车ROPS和FOPS的有限元分析[J].矿山机械,2017,45(9):18-23. FANG Chuan-qing, SONG Li-xia. FEA on ROPS & FOPS of a new-type mining dump truck[J]. Mining & Processing Equipment, 2017, 45(9):18-23.
[9] 王子源,李学飞,马铸,等.大型装载机翻车保护结构的有限元分析及试验研究[J].矿山机械,2011,39(8):39-43. WANG Zi-yuan, LI Xue-fei, MA Zhu, et al. FEA and experimental study on ROPS for large loaders[J]. Mining & Processing Equipment, 2011, 39(8):39-43.
[10] LIU Bao-shou, HUANG Xiao-dong, SUN Guang-yong, et al. Topological design of structures under dynamic periodic loads[J]. Engineering Structures, 2017, 142:128-136.
[11] NANTHAKUMAR S S, ZHUANG Xiao-ying, HAROLD S, et al. Topology optimization of flexoelectric structures[J]. Journal of the Mechanics and Physics of Solids, 2017, 105:217-234.
[12] 于凌涛,杨景,王岚,等.基于灵巧度的手术机械臂尺寸与拓扑结构优化[J].哈尔滨工程大学学报,2017,38(12):1-7. YU Ling-tao, YANG Jing, WANG Lan, et al, Dexterity-based optimization of dimension and structure for a surgical robot[J]. Journal of Harbin Engineering University, 2017, 38(12):1-7.
[13] 张庆,张斌,李洪彪,等.分动器箱体结构拓扑优化设计[J].机械传动,2016,40(6):115-118. ZHANG Qing, ZHANG Bin, LI Hong-biao, et al. Topology optimization design of transfer case housing[J]. Journal of Mechanical Transmission, 2016, 40(6):115-118.
[14] WANG Hao, YU Wei-dong, CHEN Gen-liang. An approach of topology optimization of multi-rigid-body mechanism[J]. Computer-Aided Design, 2016, 84:39-55.
[15] WEI Zhan-guo, CHENG Xu-feng, LIU Jin-hao. A finite element model of roll-over protective structures for wheel loader frame[J]. Applied Mechanics and Materials, 2012, 138/139:737-742.
[16] SEONGYEOL G, SEMYUNG W, JAEYUB H, et al. Topology optimization of thin plate structures with bending stress constraints[J]. Computers and Structures, 2016, 175(C):134-143.
[17] ZHAO Xuan, ZHANG Wen-ming, YANG Jue. Simulation of roll-over protective structure and falling object protective structure tests on heavy-duty mining dump truck[J]. Applied Mechanics and Materials, 2014, 529:188-192.
[1] 张小强,鲁碧为,刘家琴,吴玉程. 聚变堆偏滤器拓扑优化设计与稳态热分析[J]. 工程设计学报, 2023, 30(5): 601-607.
[2] 郑小飞,黄镇海,马小龙,王建新,王斌锐. 基于SIMP方法的爬杆机器人结构优化与分析[J]. 工程设计学报, 2023, 30(3): 342-352.
[3] 王景良,朱天成,朱龙彪,许飞云. 连续体结构的变密度拓扑优化方法研究[J]. 工程设计学报, 2022, 29(3): 279-285.
[4] 黄维, 刘惟伊, 刘志恩, 卢炽华. 基于多目标遗传算法的实验目标车底盘结构优化[J]. 工程设计学报, 2021, 28(1): 80-88.
[5] 张鹄志, 马哲霖, 黄海林, 金浩, 彭玮. 不同位移边界条件下钢筋混凝土深梁拓扑优化[J]. 工程设计学报, 2019, 26(6): 691-699.
[6] 潘益明, 于兰峰, 韩露男, 单逸峰. 移动式架车机伸缩托头-托架接触的有限元分析[J]. 工程设计学报, 2019, 26(3): 315-320.
[7] 张日成, 赵炯, 吴青龙, 熊肖磊, 周奇才, 焦洪宇. 考虑结构稳定性的变密度拓扑优化方法[J]. 工程设计学报, 2018, 25(4): 441-449.
[8] 杜义贤, 李荣, 徐明, 田启华, 周祥曼. 负泊松比微结构拓扑优化设计[J]. 工程设计学报, 2018, 25(4): 450-456.
[9] 邓星, 于兰峰, 雷聪, 徐江平, 肖泽平. 无轨伸缩式门式起重机接触部位的有限元分析[J]. 工程设计学报, 2018, 25(1): 79-84,93.
[10] 黄志强, 彭珣, 李刚. 可控震源振动器平板多频响应分析[J]. 工程设计学报, 2017, 24(6): 648-654.
[11] 任利辉, 焦永树, 齐德瑄. 双层黏土中自升式平台桩靴极限承载力数值分析[J]. 工程设计学报, 2017, 24(4): 425-432.
[12] 骆燕燕, 杨静宇, 任永隆, 张元磊, 李文君. 电连接器接触件插拔特性仿真与试验研究[J]. 工程设计学报, 2017, 24(2): 168-173,195.
[13] 邱瑞斌, 雷飞, 陈园, 王琼. 基于权重比的车架多工况拓扑优化方法研究[J]. 工程设计学报, 2016, 23(5): 444-452.
[14] 陈健伟, 朱大昌, 张荣兴, 朱城伟. 3-RPRR类平面全柔性并联机构拓扑优化设计[J]. 工程设计学报, 2016, 23(3): 251-255,270.
[15] 谢延敏, 何育军, 卓德志, 熊文诚. 高强度钢板U形件热冲压凹模结构拓扑优化[J]. 工程设计学报, 2016, 23(1): 60-66.